Analysis of time-dependent recovery from beryllium toxicity following chelation therapy and antioxidant supplementation.

No Thumbnail Available
Date
2004-08-03
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Efforts have been made to minimize the toxic effect caused by beryllium. Adult cyclic rats of Sprague Dawley strain were administered a bolus dose of 50mg/kg beryllium nitrate intramuscularly. The chelation therapy with glutathione (GSH), dimercapto propane sulfonic acid (DMPS)+ selenium (Se) and D-Penicillamine (DPA) + Se was given for 3 days followed by a rest of 1,3 and 7 days respectively. The results revealed a significant fall in the blood sugar level, serum alkaline phosphatase activity, serum proteins. A significant rise in the transaminases i.e. aspartate aminotranferase and alanine aminotranferase pattern is indicative of leakage of enzymes from liver resulting in alterations in the cell permeability. A rise in the hepatic lipid peroxidation activity is a direct indication of oxidative damage resulting in free radical generation. Results of the distribution studies by atomic absorption spectrophotometry reveal an increased concentration of beryllium in liver and kidney followed by lung and uterus. The relative ability of 3 chelating agents to act as antagonists for acute beryllium poisoning have been examined in liver, kidney, lungs and uterus. The appreciable change in the beryllium concentration in various organs is duration-dependent during the entire period being highly significant after 7 days rest. From the biochemical assays, and distribution studies it can be assumed that DPA+Se was the most effective therapeutic agent followed by DMPS+Se and GSH. Thus it can be concluded that DPA+Se is a better therapeutic agent as compared to DMPS+Se and GSH.
Description
Keywords
Citation
Johri S, Shrivastava S, Sharma P, Shukla S. Analysis of time-dependent recovery from beryllium toxicity following chelation therapy and antioxidant supplementation. Indian Journal of Experimental Biology. 2004 Aug; 42(8): 798-802