Modulation of mucin secretion using combined polyethylene glycol–propylene glycol topical formulation in a hyperosmotic stress-based explant model

dc.contributor.authorPanigrahi, Trailokyanathen_US
dc.contributor.authorJames, Edwinen_US
dc.contributor.authorKhamar, Poojaen_US
dc.contributor.authorGorimapalli, Bhavyaen_US
dc.contributor.authorD’Souza, Sharonen_US
dc.date.accessioned2023-08-25T06:36:44Z
dc.date.available2023-08-25T06:36:44Z
dc.date.issued2023-04
dc.description.abstractPurpose: Ocular surface discomfort and dry eye disease are caused by a dysfunctional tear film. The efficacy of lubricating eye drops on the human eye is known, but the compositions may show differential effects on rescuing the tear film. Mucins form a critical layer of the tear film, a reduction of which may be causative for ocular surface conditions. Therefore, it is essential to develop relevant human?derived models to test mucin production. Methods: Human corneoscleral rims were obtained from a healthy donor (n = 8) post?corneal keratoplasty and cultured in DMEM/F12 media. Hyperosmolar stress mimicking dry eye disease was induced by exposing the corneoscleral rim tissues to +200 mOsml NaCl?containing media. The corneoscleral rims were treated with polyethylene glycol–propylene glycol (PEG–PG)?based topical formulation. Gene expression analysis was performed for NFAT5, MUC5AC, and MUC16. Secreted mucins were measured by enzyme?linked immunosorbent assay (ELISA) (Elabscience, Houston, TX, USA) for MUC5AC and MUC16. Results: The corneoscleral rims responded to hyperosmolar stress by upregulating NFAT5, a marker for increased osmolarity, as observed in the case of dry eye disease. The expression of MUC5AC and MUC16 was reduced upon an increase in hyperosmotic stress. The corneoscleral rim tissues showed induction of MUC5AC and MUC16 expression upon treatment with PEG–PG topical formulation but did not show significant changes in the presence of hyperosmolar treatments. Conclusion: Our findings showed that PEG–PG?based topical formulation slightly alleviated hyperosmolar stress?induced decrease in MUC5AC and MUC16 gene expression that is encountered in DEDen_US
dc.identifier.affiliationsGROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, Indiaen_US
dc.identifier.affiliationsGovernment Medical College, Paripally, Kollam, Kerala, Indiaen_US
dc.identifier.affiliationsDepartment of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, Indiaen_US
dc.identifier.citationPanigrahi Trailokyanath, James Edwin, Khamar Pooja, Gorimapalli Bhavya, D’Souza Sharon. Modulation of mucin secretion using combined polyethylene glycol–propylene glycol topical formulation in a hyperosmotic stress-based explant model. Indian Journal of Ophthalmology. 2023 Apr; 71(4): 1582-1586en_US
dc.identifier.issn1998-3689
dc.identifier.issn0301-4738
dc.identifier.placeIndiaen_US
dc.identifier.urihttps://imsear.searo.who.int/handle/123456789/224971
dc.languageenen_US
dc.publisherAll India Ophthalmological Societyen_US
dc.relation.issuenumber4en_US
dc.relation.volume71en_US
dc.source.urihttps://doi.org/10.4103/IJO.IJO_2855_22en_US
dc.subjectDry eye diseaseen_US
dc.subjectELISAen_US
dc.subjecthyperosmotic stressen_US
dc.subjectmucinen_US
dc.subjectPEG–PGen_US
dc.titleModulation of mucin secretion using combined polyethylene glycol–propylene glycol topical formulation in a hyperosmotic stress-based explant modelen_US
dc.typeJournal Articleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IJO2023v71n4p1582.pdf
Size:
631.41 KB
Format:
Adobe Portable Document Format