Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Hai-Cong"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Receptors for advanced glycation end products is associated with autophagy in the clear cell renal cell carcinoma
    (Wolters Kluwer India Pvt. Ltd., 2019-04) Guo, Yong; Zhang, Hai-Cong; Xue, Sheng; Zheng, Jun-Hua
    Background: The receptor for advanced glycation end-product (RAGE) was one of the signal transduction receptors. RAGE interacted with various signaling molecules which were involved in human disease processes including tumorigenesis. Previous reports have indicated that RAGE/high-mobility group box 1 (HMGB1) could regulate autophagy in different carcinomas. However, the functional role of RAGE/ HMGB1 in the regulation of clear cell renal cell carcinoma (ccRCC) autophagy remained unrevealed. Methods: Western blot, quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence were used in the present study. Results: In this study, we demonstrated that the levels of RAGE/HMGB1 and autophagic protein LC3, Beclin-1, PI3K were much higher in ccRCC samples than those of in adjacent normal tissues. RAGE and autophagic protein expression was regulated with RAGE/HMGB1 in human RCC cell lines. Conclusion: Our results implicated that RAGE and autophagy played important roles in ccRCC, and RAGE/HMGB1 might serve as a novel therapeutic target for future ccRCC treatment

IMSEAR is the collaborative product of Health Literature, Library and Information Services (HELLIS) Network Member Libraries in the WHO South-East Asia Region.
HELLIS is coordinated by WHO Regional Office for South-East Asia.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback