Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "SURESH, GOPAL"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Discovery of antibacterial biogenic magnetosome nanoparticles from Providencia sp. MTBPRB-1: Screening, purification and characterization
    (The Indian Academy of Sciences, 2024-05) RAJALAKSHMI, ARUMUGAM; RAMESH, MANICKAM; ABIRAMI, RENGARAJAN SAI THANGA; KAVITHA, KUPPUSWAMY; SURESH, GOPAL; PRABAKARAN, VADIVEL; PUVANAKRISHNAN, RENGARAJULU; RAMESH, BALASUBRAMANIAN
    Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm?1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.

IMSEAR is the collaborative product of Health Literature, Library and Information Services (HELLIS) Network Member Libraries in the WHO South-East Asia Region.
HELLIS is coordinated by WHO Regional Office for South-East Asia.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback