Partial purification and characterization of acetylcholinesterase isozymes from adult bovine filarial parasite Setaria cervi.

No Thumbnail Available
Date
2007-10-18
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Filariasis is a major health problem, affecting millions of people in tropical and sub-tropical regions of the world. The isolation and characterization of parasite-specific enzyme targets is essential for developing effective control measures against filariasis. Acetylcholinesterase (AchE, E.C. 3.1.1.7), an important enzyme of neuromuscular transmission is found in a number of helminths including filarial parasites and may be playing a role in host-parasite interactions. Earlier, we demonstrated the presence of two isozymes of AchE, different from the host enzyme in the human (Brugia malayi) and bovine (Setaria cervi) filarial parasites. In the present study, two isozymes of AchE (pAchE1 and pAchE2) were isolated from S. cervi adults and characterized biochemically and immunochemically. The AchE was partially purified on Con-A Sepharose column and then subjected to preparative polyacrylamide gel electrophoresis (PAGE) for separation of the isozymes. The AchE activity was localized by the staining of gel and the isozymes were isolated from the PAGE strips by electroelution. Both isozymes preferentially utilized acetylcholine iodide as substrate and were strongly inhibited by the true AchE inhibitor (BW284c51), suggesting that they were true AchE. The polyclonal antibodies produced against the isozymes showed significant cross-reactivity with B. malayi AchE, but not against the host enzyme. These findings suggested that both the isozymes were biochemically (in terms of their substrate specificity and inhibitor sensitivity) and immunochemically similar, but different from the host enzyme.
Description
Keywords
Citation
Singh SK, Kaushal DC, Murthy PK, Kaushal NA. Partial purification and characterization of acetylcholinesterase isozymes from adult bovine filarial parasite Setaria cervi. Indian Journal of Biochemistry & Biophysics. 2007 Oct; 44(5): 379-85