Swamy, R KManickam, JAdhikari, J SDwarakanath, B S2009-05-282009-05-282005-08-27Swamy RK, Manickam J, Adhikari JS, Dwarakanath BS. Glycolytic inhibitor, 2-deoxy-D-glucose, does not enhance radiation-induced apoptosis in mouse thymocytes and splenocytes in vitro. Indian Journal of Experimental Biology. 2005 Aug; 43(8): 686-92http://imsear.searo.who.int/handle/123456789/58415Earlier studies have shown that 2-deoxy-D-glucose (2-DG), a glucose analogue and inhibitor of glycolytic ATP production selectively enhances radiation-induced damage in cancer cells by inhibiting the energy (ATP) dependent postirradiation DNA and cellular repair processes. A reduction in radiation induced cytogenetic damage has been reported in normal cells viz., peripheral blood lymphocytes and bone marrow cells. Since induction of apoptosis plays a major role in determining the radiosensitivity of some most sensitive normal cells including splenocytes and thymocytes, we investigated the effects of 2-DG on radiation induced apo tosis in these cells in vitro. Thymocytes and splenocytes isolated from normal Swiss albino mouse were irradiated with Co60 gamma-rays and analyzed for apoptosis at various post-irradiation times. 2-DG added at the time of irradiation was present till the termination of cultures. A time dependent, spontaneous apoptosis was evident in both the cell systems, with nearly 40% of the cells undergoing apoptosis at 12 hr of incubation. The dose response of radiation-induced apoptosis was essentially similar in both the cell systems and was dependent on the incubation time. More than 70% of the splenocytes and 60% of the thymocytes were apoptotic by 12 hr following an absorbed dose of 2 Gy. Presence of 2-DG marginally reduced the fraction of splenocytes undergoing apoptosis at all absorbed doses, while no change was observed in thymocytes. Presence of 2-DG did not significantly alter either the level or the rate of induction of spontaneous apoptosis in both these cell systems. These results are consistent with the earlier findings on radiation-induced cytogenetic damage in human PBL in vitro and mouse bone marrow cells and lend further support to the proposition that 2-DG does not enhance radiation damage in normal cells, while radiosensitizing the tumors and hence is an ideal adjuvant in the radiotherapy of tumors.engAnimalsAntimetabolites --pharmacologyApoptosis --drug effectsCells, CulturedDNA --metabolismDeoxyglucose --pharmacologyDose-Response Relationship, RadiationFemaleGamma RaysMiceSpleen --cytologyThymus Gland --cytologyGlycolytic inhibitor, 2-deoxy-D-glucose, does not enhance radiation-induced apoptosis in mouse thymocytes and splenocytes in vitro.Journal Article