Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Thomas, Alan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Development and validation of a mobile application based on a machine learning model to aid in predicting dosage of vitamin K antagonists among Indian patients post mechanical heart valve replacement
    (Cardiological Society of India, 2022-12) Amruthlal, M.; Devika, S.; Krishnan, Vignesh; Suhail, P.A. Ameer; Menon, Aravind K.; Thomas, Alan; Thomas, Manu; Sanjay, G.; Kanth, L.R. Lakshmi; Jeemon, P.; Jose, Jimmy; Harikrishnan, S.
    Patients who undergo heart valve replacements with mechanical valves need to take Vitamin K Antagonists (VKA) drugs (Warfarin, Nicoumalone) which has got a very narrow therapeutic range and needs very close monitoring using PT-INR. Accessibility to physicians to titrate drugs doses is a major problem in low-middle income countries (LMIC) like India. Our work was aimed at predicting the maintenance dosage of these drugs, using the de-identified medical data collected from patients attending an INR Clinic in South India. We used artificial intelligence (AI) - machine learning to develop the algorithm. A Support Vector Machine (SVM) regression model was built to predict the maintenance dosage of warfarin, who have stable INR values between 2.0 and 4.0. We developed a simple user friendly android mobile application for patients to use the algorithm to predict the doses. The algorithm generated drug doses in 1100 patients were compared to cardiologist prescribed doses and found to have an excellent correlation.

IMSEAR is the collaborative product of Health Literature, Library and Information Services (HELLIS) Network Member Libraries in the WHO South-East Asia Region.
HELLIS is coordinated by WHO Regional Office for South-East Asia.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback