Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Islam, Nazneen"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of the biological effect of BiodentineTM on primary dental pulp stem cells
    (Indian Society for Dental Research, 2018-11) Hasweh, Nadine; Awidi, Abdalla; Rajab, Lamis; Hiyasat, Ahmad; Jafar, Hanan; Islam, Nazneen; Hasan, Maram; Abuarqoub, Duaa
    Biodentine™ is relatively a new tricalcium silicate cement that has gained great attention of the researchers due to its biological potential in comparison with other materials. The aim of this study was to investigate the optimum concentrations of Biodentine in relation to its stimulatory or inhibitory effect on proliferation, migration and adhesion of stem cells of human exfoliated deciduous teeth (SHED). The cell cultures of SHED were treated with Biodentine™ extract at four different concentrations; 20mg/ml, 2mg/ml, 0.2mg/ml and 0.02mg/ml. Cells cultured without Biodentine™ were kept as a blank control. The proliferation potential of SHED cells was evaluated by MTT viability analysis for 6 days. Migration potential was investigated by wound healing and transwell migration assays. The growth, survival and communication potential of these cells was determined by Adhesion assay. Results: A significant increase was observed in the proliferation and migration of SHED at (2mg/ml, 0.2mg/ml and 0.02mg/ml) while higher concentration of Biodentine™ (20mg/ml) exhibited cytotoxic effect on the cells. However, three tested Biodentine™ concentrations were similar in effect (non-significant) to adhesion ability of cells when compared with blank control. Conclusion: Our findings suggest that lower concentrations of Biodentine™ can be considered as the optimum concentrations to enhance the stimulatory effect of Biodentine on SHED.

IMSEAR is the collaborative product of Health Literature, Library and Information Services (HELLIS) Network Member Libraries in the WHO South-East Asia Region.
HELLIS is coordinated by WHO Regional Office for South-East Asia.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback