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INTRODUCTION

		  ardiovascular diseases are more prevalent in the 
		  patients with diabetes mellitus (DM).1 Many 
		  researchers have ultrastructurally investigated the 
cardiovascular effects of DM. Most ultrastructural stud-
ies in the diabetic hearts have been focused on only the 
ventricular myocardium.2-4 while either atrial chambers or 
three layers of cardiac wall; endocardium, myocardium, 
and epicardium, have not been fully elucidated. Therefore, 
the objective of present study was to examine the altera-
tions in all cardiac chambers of the streptozotocin (STZ)-
induced diabetic rats by using light microscopy (LM) and 
transmission electron microscopy (TEM).

MATERIALS AND METHODS

Animal Preparation
	 Seventeen male Sprague-Dawley rats (National 
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ABSTRACT

Objective: To examine the alterations of four cardiac chambers in the streptozotocin (STZ)-induced diabetic rats by using light 
and transmission electron microscopies
Methods: Eleven STZ-induced diabetic and six control adult male Sprague-Dawley rats were applied. After the induction for 
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of sarcomere was irregular with lost myofilaments. Moreover, swollen mitochondria with disrupted cristae were examined and 
increased in number. The number of specific atrial granules decreased in the atrial cardiac myocytes. Increased lipid droplets 
and myelin figures were seen in the myocytes. The intercalated disc was disrupted in some portions. The capillary lumen was 
narrowed due to swollen endothelial cells with thick basal lamina.
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Laboratory Animal Center, Mahidol University, Salaya, 
Nakonpathom, Thailand, 5-8 weeks old, 200-270 g) were 
randomly separated into control (n=6) and diabetic (n=11) 
groups. The Mahidol University Council’s Criteria for Care 
and Use of Laboratory Animal were followed to perform 
in this study. A week after the arrival, each animal was 
fasted at least 6 hours, and the glucose concentration in 
urine was determined by using the urinalysis control strips 
(Diabur-Test 5000, Roche Ltd., Germany). The results of 
the urine glucose concentrations were 0 mg/dL; therefore 
the animals can be applied in the experiment.

Induction
	 In the DM (n; LM=5, TEM=6), a single dose of 
STZ (60 mg/kg body weight; Across Organics, Janssen 
Pharmaceutical, Belgium) in the citrate buffer at pH 4.5 
was injected intraperitoneally into each rat. In the control 
group, the rats (n; LM=3, TEM=3) were injected intraperi-
toneally with the same amounts of the citrate buffer. In 
every morning, the urine glucose levels and body weights 
were determined. In addition, OneTouch® UltraTM blood 
glucose monitoring system (LifeScan Inc. 2005, Califor-
nia, USA) was used to measure the whole blood glucose 
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levels at 48 and 72 hours after the induction and before 
sacrifice. All animals were sacrificed at 24 weeks after 
the inductions as a long term. 

Histological Study of Heart
	 All cardiac chambers were fixed with Bouin’s solu-
tion. The standard procedures for histology processing 
were followed. The specimens were serially sectioned at 
7 µm thick. After that, the serial sections were mounted 
on the glass slides, stained with hematoxylin and eosin, 
viewed and photographed under the LM (Axiostar plus, 
Jena, Germany), connected to a digital camera (AxioCam 
MRc, Jena, Germany). 

Ultrastructures of Heart
	 Four cardiac chambers were processed for the con-
ventional TEM. The blocks of each tissue were serially 
sectioned by an ultramicrotome (80-85 nm thick; Leic 
EM: UC6, Austria). Then, the sections were stained with 
uranyl acetate and lead citrate, observed and photographed 
under the TEM (JEOL JEM 1230, Japan).

Measurement in Diameters
	 Ten light micrographs were taken in each chamber 
of all rats. Both sizes of cardiac myocytes and Purkinje 
fibers were determined by using the digital image analysis 
with computer programs (AxioVision Rel. 4.6, Jena, Ger-
many). The diameter of each cell was measured at three 
points. The first point was at the central part of the cell 
with a nucleus. The second and third points were at 10 
µm intervals from each side of the first point. All points 
were calculated as an average of one cell. 

Statistical Analysis
	 The results were expressed as means ± standard 
deviations (SD). The comparisons were performed by using
Mann-Whitney U test (SPSS 16.0 software). The signifi-
cance level was set at p-value < .05.
 

RESULTS

	 In the diabetic rats as in the previous study.5 urine 
glucose levels were more than 500 mg/dL, and whole 
blood glucose levels were greater than 300 mg/dL. More-
over, body weight significantly decreased (289.27 ± 64.62 g),
when compared to that in the control rats (444.83 ± 42.02 g,
p <.05).
	 Each chamber consisted of three layers; endocardium, 
myocardium, and epicardium. Alterations of cells and their 
ultrastructures of each layer in all chambers were similar 
appearances. When compared to those in the control, dia-
betic endothelial and mesothelial cells were swollen and 
the subendocardial/subepicardial layers revealed thickening 
with fibrosis (Fig 1A-D). In the diabetic cardiac myocytes, 

they were hypertrophy with disorganization of myofibrils. 
Furthermore, diabetic myocardium of left ventricle displayed
extensive interstitial hemorrhage (Fig 1E-F, Table 1). In 
the diabetic myocardium, interstitial fibrosis, infiltrations 
of lymphocytes and macrophages, and contraction band 
necrosis were examined. The diabetic Purkinje fibers were 
significantly larger than those in control, and their myofi-
brils were disorganized (Fig 2A-E, Table 1).
	 Under the TEM, swollen endothelial/mesothelial cells 
in the DM laid on thick basal lamina, and their cyto-
plasm contained numerous pinocytotic vesicles, vacuoles, 
and dilated rER. Their nuclei were irregular shape with 
invaginations of nuclear membrane. The subendocardial/
subepicardial layers were enlarged with accumulation of 
collagen fibrils (Fig 3A-D). The arrangements of sarcomere 
were irregular and myofilaments were lost. Interestingly, 
number of specific atrial granules decreased in the diabetic 
atrial cardiac myocytes (Fig 3E-F). Additionally, there were 
increased invaginations of cardiac nuclei and thic-kening                                                          
of heterochromatin lining nuclear membrane in the ven-

Fig 1. Light micrographs of three layers in cardiac control (1A, 
1C, 1E) and DM (1B, 1D, 1F): endocardium (1A-B), epicardium 
(1C-D), myocardium (1E-F). Endothelial cells (white arrows), 
subendocardial layers (white asterisks), heart cavity (HC), me-
sothelial cells (black arrows), subepicardial layers (black aster-
isks), pericardial cavity (PC), cardiac nuclei (white arrowheads), 
intercalated disc (ID), capillary (c), disorganization of cardiac 
myofibrils (black arrowheads), interstitial hemorrhage (a black 
star). Hematoxylin and eosin staining.

Groups	                          Diameters of cardiac myocytes (µm)	                       Diameters of Purkinje fibers (µm)
		  Control (n=90)	 DM (n=120)	 Control (n=90)	 DM (n=120)
		  16.97 ± 0.64	 21.78 ± 0.91*
Right atrium	 19.89 ± 0.31	 22.81 ± 0.32*	 -	 -
Right ventricle	 17.96 ± 1.68	 22.39 ± 0.94*	 43.31 ± 0.78	 49.28 ± 1.38*
Left atrium	 21.55 ± 0.72	 23.89 ± 1.01*	 -	 -
Left ventricle	  		  42.31 ± 2.40	 48.75 ± 1.49*

TABLE 1. Comparisons in diameters of cardiac myocytes and Purkinje fibers in control and DM.

*p-value <.05 compared to the same chamber of the age-matched control rats
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tricular cardiac myocytes (Fig 4A-B). Some diabetic cardiac 
myocytes exhibited contraction band necrosis, increased 
number of swollen mitochondria with disrupted cristae, 
numerous lipid droplets and myelin figures (Fig 4C-D). 
The intercalated disc was damaged in some portions (Fig 
4E-F). The modifications of diabetic Purkinje fibers were 

Fig 2. Light micrographs of diabetic myocardium (2A-C), Pur-
kinje fibers of control (2D) and DM (2E). Interstitial fibrosis (F), 
macrophage (M), lymphocyte infiltration (L), Purkinje fibers (white 
arrowheads), disorganization of Purkinje fiber (a black asterisk), 
contraction band necrosis (CB). Hematoxylin and eosin staining.

Fig 3. Transmission electron micrographs of three layers in car-
diac control (3A, 3C, 3E) and DM (3B, 3D, 3F): endocardium 
(3A-B), epicardium (3C-D), myocardium (3E-F). Nuclei (N), 
rER (black arrowheads), pinocytic vesicles (white arrowheads), 
subendocardial/subepicardial layers (white asterisks), basal lamina 
(white arrows), invagination of nuclear membrane (black arrows), 
mitochondria (M), vacuole (V), heart cavity (HC), pericardial 
cavity (PC), collagen fibrils (C), myofilament (My), sarcomere 
(S), loss of myofilament (a black asterisk), specific atrial granules 
(Sp), sarcolemma (Sa).

Fig 4. Transmission electron micrographs of myocardium in 
control (4A, E) and diabetic (4B-D, F) rats. Nuclei (N), mito-
chondria (M), myofilament (My), capillary (c), sarcomere (S), 
thick heterochromatin (white arrows), invagination of nuclear 
membrane (black arrows), contraction band necrosis (CB), lipid 
droplet (a black arrowhead), myelin figure (Mf), desmosome 
(D), fascia adherens (F), gap junction (G), disrupted intercalated 
disks (black asterisks).

destroyed cristae in mitochondria and disorganization of 
sarcomere (Fig 5A-B). The diabetic endothelial cells of 
capillary swelled and protruded into lumen (Fig 5C-D). 
The large numbers of pinocytotic vesicles and vacuoles 
were found in their cytoplasm. Close contact between 
pericytes and capillary endothelial cells lost, because of 
thick basal lamina (Fig 5E-F).
 

DISCUSSION

	 In this study, increases in diameters of both cardiac 
myocytes and Purkinje fibers were found in the diabetic 
rats. The hypertrophy of these might probably represent 
a compensatory mechanism in the adaptation of cardiac 
function in hyperglycemia of diabetic stress.6 Furthermore, 
hypertrophy of cardiac myocytes was due to swollen mito-
chondria and increases in numbers of mitochondria, lipid 
droplets, and myelin figures. Both raised reactive oxygen 
species (ROS) and fatty acid during DM lead to swelling 
of mitochondria via a loss of membrane permeability.7 
Moreover, ROS induces phospholipid cardiolipin in the 
inner membrane of mitochondria that interacts with ROS 
to disrupt the cristae.8 Risen number of mitochondria as-
sociates with mitochondrial biogenesis during the diabetes 
such as hypoxia, ischemia and cardiac failures.9 Damaged 
organelle such as mitochondria are fused by lysosomes in 
autophagy and finally become myelin figures.10 In ketone 
acidosis during the diabetes, reduced activity of carnitine 
acyl transferase and transportation of fatty acyl-CoA into 
the mitochondria cause formation of lipid droplets in the 
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cytoplasm of diabetic myocardium.11 Although the diameter 
of Purkinje fibers increased in the diabetic stage, they 
were partially intact. Normally, higher activity of glucose-
6-phosphate dehydrogenase in the conducting system 
produces an antioxidant, glutathione, to protect Purkinje 
fibers during increased ROS in DM.12 In the DM, cardiac 
myocytes and Purkinje fibers became disorganization and 
loss of myofibrils. Lower levels of cardiac specific tran-
scription factor and myosin Ca2+ ATPase in the diabetes 
cause diminished alpha-myosin heavy chain expression 
and myosin light chain phosphorylation. Moreover, α-actin 
mRNA decreases in the cardiac diabetic rats that causes 
reduction of F-actin.13 Furthermore, there is decreased con-
nexin 43 in the intercalated disc of diabetic myocardium.3 
As a consequence, disruption of intercalated disc occurred 
in DM that increases an incident of cardiac arrhythmia.4
Moreover, there were contraction band necroses in the 
diabetic myocardium. In calcium-independent mechanism, 
adenosine triphosphate synthesis is low in the STZ-diabetic 
rats and activates hypercontraction of sarcomere.14 In the 
oxidative stress, activated caspase 6 leads to disassembly 
of nuclear membrane with raised numbers of cell organelle
as mentioned above that may cause an invagination of 
nuclear membrane. Because of DNA cleavage by endo-
nuclease during DM, thick heterochromatin occurred in the 
cardiac myocytes.15 Additionally, contraction and relaxation 
of ventricles are stronger than those of atrium.16 As a result, 
increases in number of heterochromatin in nucleus and 
invagination of nuclear membrane were found only in the 
ventricular cardiac myocytes. Decreased number of specific 
atrial granules as in this investigation is due to increased 
secretion, decreased synthesis and mRNA expression of 

atrial natriuretic peptide in the STZ-induced diabetic rats.17 
During the diabetes, advance glycation end product is 
produced and acts as a chemotactic factor for macrophages 
that secrete cytokines to attract inflammatory cells such 
as lymphocytes.18 Therefore, lymphatic infiltration was 
observed in this examination. It was found that fibrosis 
happened in the subendocardial and subepicardial layers 
as well as pericapillary. High glucose level activates gene 
enhancer sequence of the collagen promoter. Then, fibro-
blasts synthesize and secrete collagen fibril accumulation.19 
Moreover, numerous pinocytotic vesicles and vacuoles as 
well as rER dilatation were investigated in the cytoplasm 
of endothelial and mesothelial cells. The raised pinocytotic 
vesicles are cause of increased numbers of low density 
lipoprotein (LDL) and oxidation of LDL (oxLDL) in the 
diabetic stage. The oxLDL leads to an increased ruffling 
of plasma membrane and numerous pinocytotic vesicles 
in cultured vascular endothelial cells.20 Because of high 
level of ROS, endothelial dysfunction is associated with 
damaged mitochondria, which are digested by autophagy.21 
Accordingly, the vacuoles were observed in the diabetic 
rats. Moreover, dilatation of rER was found in endothelial/
mesothelial cells due to hyperfunction of rER to synthesize 
more proteins for mitochondrial duplication and enzymes 
for lysosome activity. In addition, an increased fatty acid 
in the diabetes incorporates into biological membrane        
of rER that contributes to rER dilatation.22 The swollen 
endothelial cells of capillary caused a narrow lumen in the 
diabetic group. Due to thick basal lamina, contact between 
pericyte and capillary endothelial cell was widened. As 
a result, blood supply of heart reduces that contributes 
ischemic heart failure in the diabetic patients.23 Moreover, 
severe diabetic damage of left ventricular chamber was 
indicated by interstitial hemorrhage. Increased expression 
of matrix metalloproteinase (MMP), an enzyme for tight 
junction degradation, in endothelial cells of the diabetic 
retina occurs.24 Therefore, disruption of tight junction be-
tween endothelium in capillary happens. This mechanism 
causes capillary aneurysm in the diabetic heart.25 Because 
of the highest blood pressure in the left ventricle and  
destroyed endothelium of capillary, the hemorrhage into 
the interstitial space is detected only in this chamber.
	 In conclusion, numerous alterations in all chambers 
of heart in developing cardiac failure in DM were shown. 
Consequently, the present study provides an important 
basic knowledge to understand the pathological changes 
and further therapeutic treatment of cardiac complications 
in the DM patients. 
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