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Identification of drought stress-responsive genes in rice (Oryza sativa)
by meta-analysis of microarray data
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Abstract. Meta-analysis provides a systematic access to the previously studied microarray datasets that can recognize several common
signatures of stresses. Three different datasets of abiotic stresses on rice were used for meta-analysis. These microarray datasets were
normalized to regulate data for technical variation, as opposed to biological differences between the samples. A t-test was performed to
recognize the differentially-expressed genes (DEGs) between stressed and normal samples. Gene ontology enrichment analysis revealed the
functional distribution of DEGs in different stressed conditions. Further analysis was carried out using software RICE NET DB and divided
into three different categories: biological process (homoiothermy and protein amino acid phosphorylation), cellular component (nucleus
and membrane), and molecular function (zinc ion binding ad DNA binding). The study revealed that 5686 genes were constantly expressed
differentially in Oryza sativa (2089 upregulated and 3597 downregulated). The lowest P value (P = 0.003756) among upregulated DEGs
was observed for naringenin, 2-oxoglutrate 3-dioxygenase protein. The lowest P value (P = 0.002866816) among the downregulated DEGs
was also recorded for retrotransposon protein. The network constructed from 48 genes revealed 10 hub genes that are connected with
topological genes. These hub genes are stress responsive genes that may also be regarded as the marker genes for drought stress response.
Our study reported a new set of hub genes (reference genes) that have potentially significant role in development of stress tolerant rice.

Keywords. meta-analysis; drought; abiotic stress; downregulated; upregulated; differentially expressed genes; hub genes.

Introduction

The natural environment of the plant is composed of several
rate-limiting constituents, these may regulate the plant
growth in several ways. Abiotic stresses are one of the major
factors altering the metabolic pathway of plant system
(Cramer et al. 2011). They follow a stringent pathway,
depends on the type of stimulant (drought, water logging,
cold heat and adverse condition). These stimulants or
stresses may alter the normal plant growth as a result of
differential gene expression.

Abiotic stress such as drought, water-logging/flooding,
cold, heat, alkalinity/acidity of soil and metal toxicity
adversely affect the growth, development, yield and seed
quality of plants/crops which can lead to changes/alteration
in gene expression. Under stress conditions, plants have

developed complex mechanisms to distinguish external
signals which allow them to acclimatize in changing envi-
ronmental conditions for their survival. The emergence of
high throughput technologies such as microarray and next-
generation sequencing is used for the study of the unusual
genomic alteration in biotic and abiotic stressed plants.
Using these techniques, researchers can detect the genomic
alteration in the plant cells caused by specific stimulants.

Plant stress usually reflects sudden changes in the plant
system that ultimately lends a signature effect on the plant
system. These variations are gradually adopted for the survival
of the plant. These variations are not a result of single variable,
it is a multi-gene system that regulates and maintain the
physiological homeostasis of the plant system (Velazquez
et al. 2011). Drought is found to be one of the major abiotic
stress affecting the plant growth and yield. It reduces the rate of
photosynthesis in the cells by exerting several undesired stress
on the cells, such as hardening of the cell wall, accumulation of
reactive oxygen species (ROS) and secondary metabolites
(You and Chan 2015). During a study, it came to light that the
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drought affected the total DNA methylation pattern which
counted as an average total of 12.1% methylation differences
when calculated across different tissue, genotype and devel-
opmental stage (Saraswat et al. 2017). In plant system, the cell
wall is composed of cellulose and connected to hemicellulose.
Besides these major components, it also has a trace amount of
phenolics, esterase, pectin, expansin and several other pro-
teins. Drought and other stress cause the production of ROS
leading to crosslinking of phenolics with glycoproteins
resulting in hardening of the cell wall (Tenhaken 2014). This
hardening of cell wall ultimately reduces the leaf surface area
and photosynthetic rate per unit area (Basu et al. 2016).

Plants have diversemechanisms to sustain drought at cellular
and physiological levels. At the physiological level, they reduce
water loss by a decreased rate of diffusion through stomata and
other parts, increases water absorption with the enhanced root
system, smaller and succulent leaves to diminish water defi-
ciency. Drought stress in plant can be managed by executing
few tactics such asmarker-assisted selection, breeding andmass
screening and an extracellular spray of hormones and osmo-
protectants (Fang and Xiong 2015).

The plants experiencing stresses, i.e. biotic or abiotic,
independently and facing positive and negative influence have
shown crosstalk between them (Abuqamar et al. 2009). These
studies have offered opportunities to improve plants for
fighting different individual stress tolerance (Mao et al. 2010).
Currently, the gene expression data from separate experiments
of biotic and abiotic stress have been exploited to find out
shared stress-responsive genes (Shaik and Ramakrishna
2013, 2014). Plants in nature are generally tested by various
biotic and abiotic stresses. Plants capable of tolerating two or
more independent stresses are not really capable of tolerating
these stress altogether (Atkinson and Urwin 2012; Rame-
gowda and Kumar 2015). The reports showed that plants are
capable of coping up with coinciding biotic and abiotic
stresses through demonstration of relevant responses which
cannot be comprehended by specifically concluding the out-
comes from specific stress studies where each stress is applied
separately (Bostock et al. 2014). There is a requirement of
comprehending coinciding biotic and abiotic stress tolerance
of plants because sufficient work was not done for this pur-
pose. The answer to this problem is combining the different
stressed conditions data and find out specific markers in
response to stress through meta-analysis.

Meta-analysis of available data has the potential to explore
the transcriptomic studies (Feichtinger et al. 2012). It is based
on the statistical analysis of multiple studies on the similar
experimental conditions, based on this one can easily identify
the variation and have a reason for this alteration. By com-
paring the studies on the statistical background, it increases the
reliability of the outcomewith a given set of data thatmay be in
the form of genes called as differentially-expressed genes
(DEGs) (Ramasamy et al. 2008).

Keeping the above situation in mind, this work was
designed to study abiotic stress on plants together by com-
paring the microarray datasets of different stresses on rice

(Oryza sativa). The objective of this study was that a meta-
analysis of freely accessible microarray datasets of different
biotic and abiotic stresses on rice can recognize a common
mark of stresses and apply a meta-analysis method on var-
ious microarray datasets which then approves the signature
in individual datasets (Daves et al. 2011).

Materials and methods

Microarray datasets selection

The publicly available microarray studies were searched
using several keywords and their combinations such as
‘O. sativa, abiotic stress, gene expression, microarray and
genome’ by using Gene Expression Omnibus (GEO) data-
base for candidate genes in O. sativa gene expression
datasets. The data collected further screened for eligibility
and the duplicate data was excluded (figure 1).

The available experimental datasets and their correspond-
ing experimental conditions were only attributed towards the
gene expression profiling in O. sativa between controlled and
stressed conditions. The data of stressed samples were col-
lected after administration of stress conditions. In the present
study, a meta-analysis was performed as per the guidelines of
PRISMA statement. Data were accessed from original studies
having GEO accession number, analysis platform, the number
of cases and controls, gene expression data and related refer-
ences (Yang et al. 2014). Among the data, two of them were
collected from root tissues and one from the seedling of the
rice. The data with GEO ID GSE36661 administered with
drought stress, similarly GSE62308 and GSE64576 admin-
istered with ABA-regulated drought stress (table 1).

Data curation

In data curation, normalization of available data and related
parameters is a very crucial step in comparing microarray
datasets. It became very difficult in a direct comparison
between altered datasets from various sources; these differ-
ences arise mainly due to the use of the different platform,
gene nomenclature and tissue used as a control. Variation in
the normalization may lead to the probability of distorting
comparative outcome; it reduces the authentic computation
of candidate gene expression changes. As a consequence,
there may be a need to consider a globally accepted nor-
malization pathway for minimal inconsistency. Z score
transformation method is very reliable and sensitive tool to
compute the expression potencies of each probe in gene
expression profiles and computed by the given formula.

Z score ¼ ðxi� �xÞ
d

;

where xi denotes raw data for each gene; �x denotes average
gene intensity within a single experiment and d denotes
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standard deviation (SD) of all measured potencies (Yang
et al. 2014).

Statistical analysis

To identify the DEGs between stressed and control samples
statistical significance analysis of microarray (SAM) was
used. Microsoft Excel 2010 was used to analyze the data.
The specific t-test (one-tailed, paired t-test) was performed to
validate the significance of DEGs with a ‘comparative dif-
ference’ score for screened candidate genes (Yang et al.
2014). The average expression change from various
expression forms the standard deviation of values for that
gene is termed as P value (Hou et al. 2014). DEGs were

selected from those genes which showed at least two-fold
changes equivalent to a false discovery rate (FDR)\ 0.01
(Tusher et al. 2001).

Venn diagram

Venn diagrams were prepared using online tool Venny v2.1.
The individual microarray data was normalized and fold
change values were calculated. Fold change value[ 2 were
selected as upregulated DEGs and fold change value\ 2
were selected as downregulated DEGs. The list of selected
reference IDs were pasted in the online tool which will
provide the common upregulated and common downregu-
lated DEGs among all three microarray data. Venn diagrams

Figure 1. Flowchart of the selected process of microarray datasets for the meta-analysis.

Table 1. Characteristics of the individual studies included in study.

GEO ID Sample count (case : control) Platform Tissue Type of stress

GSE36661 3:3 Affymetrix rice genome array Root Disease and drought
GSE62308 2:2 Affymetrix rice genome array Seedling ABA-regulated drought stress
GSE64576 4:4 Affymetrix rice genome array Root ABA-regulated drought stress
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were also constructed for tissues vs conditions as shown in
figure 2.

Functional classification of DEGs

Functional distribution and biological significance of
screened DEGs were further analysed on RICE NET DB
(Narsai et al. 2013). These online tools perform the gene
ontology (GO) enrichment analysis and find the biological

significance of candidate gene in a wide variety of datasets
(Madrid et al. 2012).

Biological network construction

Coexpression networks are useful for associate genes that
are involved in the same biological pathway or that are of
protein complexes (Moyano et al. 2015). The coexpression
network was constructed for the genes greater than fold
change ± 1.5 and P value less than 0.05 by constructing the
coefficient correlation matrix. Those genes that have Pear-
son’s coefficient correlation above the cut-off value,
i.e. ± 0.95 are used for construction of biological network
using expression correlation and network analyzer by net-
work analyst of Cytoscape (Shannon et al. 2003). In bio-
logical network, nodes represent the genes and nodes
represent the connectivity between the genes. Hub genes
(most connected genes among the biological network) were
also screened using cytoHubba plugin of cytoscape (Chin
et al. 2014).

Results and discussion

Drought is among the major abiotic stresses which limits the
crop production worldwide. Drought can be described as the
deficiency of water for a period of time which results in

Figure 2. Venn diagrams of tissues vs conditions of microarray
data.

Figure 3. Venn diagrams summarizing microarray data analysis: (a) Venn diagram showing number of upregulated and (b) downregulated
genes in rice after drought stress. Only genes with log2 fold change above 2 were considered for this analysis.
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water shortage, depleting soil moisture and cause adverse
effects on plants. Drought drastically devastates plant growth
and development with considerable reductions in crop
growth rate and biomass accumulation. Meta-analysis
approach integrates DEGs from microarray datasets which
were expressed consistently with statistical significance and
performed GO enrichment analysis. High-throughput tran-
scriptomic data enable meta-analysis of multiple datasets
which lead to discovering robust candidate gene for stress
(Fang et al. 2015). In this study, we identified DEGs by
comparing transcriptomic responses in stress and normal
rice. Most important candidate genes were identified in
pathways involved in abiotic stress. The gene expression of
rice during abiotic stress indicated that the expression levels
of these DEGs were changed with induction of stress in rice
(Yu et al. 2014).

The Venn diagram was prepared by the induction of stress
in rice to identify the exclusively upregulated and down-
regulated genes. Five hundred and fifty genes were exclu-
sively upregulated in GSE36661, 1981 genes in GSE62308
and 1506 genes in GSE64576 (figure 3a). Only one gene
was found to upregulated in all three data conditions. Six
hundred and sixty genes were exclusively downregulated in
GSE36661, 1809 in GSE62308 and 1570 in GSE64576
(figure 3b). There was no common gene found to be
downregulated among them.

Detecting genes associated with drought stress

During this study, a collection of total three expression
profiling studies were used as per the inclusion criteria,
among these profiles, nine treated samples of O. sativa and
nine control samples were included. In this study, two roots
samples and one seedling samples were utilized. Detecting
genes linked with O. sativa to find out the genetic markers
which are engaged in the development of stress condition
during growth of O. sativa, the probe ID should be similar
for all the data and microarray platform, which denote a
named gene. The probe ID should be converted to gene ID
or locus ID. The expression value was logarithmically
transformed (base 2) which gives a total of 57,381 genes for
this study. For each gene, expression values were changed to
the Z-score for the objective of global normalization. The
changes in gene expression between stressed/treated and
control/normal O. sativa were investigated using the
assembled expression compilation. After that, SAM method
was used to identify the DEGs between stressed and control
samples. A total of 5686 genes with an FDR of minimum 2
and –2 in upregulated and downregulated genes, after
applying a minimum P value of 0.01, were found with
changed expression in samples of stressed O. sativa in
comparison to control. Of the total 5686 DEGs, the number
of upregulated genes is 2089 and the number of downreg-
ulated genes is 3597 at the level of 1% significance. The
DEG with lowest P value (P = 0.003756) among T
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upregulated DEGs express naringenin, 2-oxoglutarate
3-dioxygenase protein. The predicted subcellular location of
this protein is cytosol chloroplast. This protein is involved in
flavonoid biosynthesis pathway, which is a part of secondary
metabolite biosynthesis. The DEG with lowest P value
(P = 0.002866816) among the downregulated DEGs express
retrotransposon protein which is a member of cytochrome
P450 family protein. Retrotransposons are regulators of gene
expression mediated through RNA intermediate (Elbarbary
et al. 2016). Therefore during the drought condition, plants
become incapable of synthesis of proteins helpful to over-
come the stress condition (tables 2 & 3).

Top 10 significantly downregulated and upregulated
DEGs are listed in tables 2&3. Among the most upregulated
DEGs, most of the genes are responsible for the proteins like
heat shock protein STI, heat shock protein DnaJ, U-box
domain containing heat shock protein, hsp20/alpha crystallin
family protein. In response to drought stress, plants develop
protective strategies to cope up with it. Heat shock proteins
synthesis is one of the protective tools of the plants to pro-
vide a defense against drought and heat stress (Virdi et al.
2015).

Similarly, a few downregulated DEGs are observed in
response to drought stress which regulates the proteins like

Table 3. Details of upregulated genes obtained during meta-analysis.

Affymetrix ID Locus ID Fold change Gene expression P value

Os.7095.1.S1_at LOC_Os04g49210 2.200212 Naringenin,2-oxoglutarate 3-dioxygenase 0.003756
Os.16317.1.S1_at LOC_Os04g45480 3.152641 Heat shock protein STI 0.004203
Os.2292.3.S1_x_at LOC_Os03g53340 3.090799 HSF-type DNA-binding domain containing protein 0.005923
Os.10942.1.S1_a_at LOC_Os10g28340 6.058194 Heat stress transcription factor 0.006883
Os.49648.1.S1_s_at LOC_Os02g54140 3.414359 hsp20/alpha crystallin family protein 0.007126
Os.55306.1.S1_at LOC_Os09g27330 3.232658 Oxidoreductase / transition metal ion binding protein 0.007448
Os.11376.1.S1_at LOC_Os06g06490 2.300383 U-box domain containing heat shock protein 0.008226
Os.5574.1.S1_s_at LOC_Os02g08490 4.631049 Hypothetical protein 0.009367
Os.8032.1.S1_at LOC_Os04g57440 2.292794 Oryzain beta chain precursor 0.009751
Os.5817.1.S1_at LOC_Os06g09560 4.495812 Heat shock protein DnaJ 0.010119

Figure 4. The top 10 enriched GO terms of upregulated DEGs. (a) Biological process for DEGs; (b) cellular component for DEGs;
(c) molecular function for DEGs.
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retrotransposon protein, diterpene phytoalexin precursor
biosynthetic process pathway and ent-kaurene synthase,
chloroplast precursor, CAMK_CAMK_like.47 - CAMK
includes calcium/calmodulin-dependent protein kinases.
Calmodulin (CaM) acts as an integrator of different stress
signalling pathways, which allows plants to maintain
homeostasis between different cellular processes (Virdi et al.
2015). In case of drought stress, plants encounter osmotic
stress which however, further induces a chain of various
responses at the molecular and cellular levels. Due to
osmotic stress, the concentration of the cytosolic Ca2? in-
creases which transduces Ca2? signals. Ca2?-ion signalling
induces appropriate cellular responses to overcome the
damage caused by the drought stress (Zeng et al. 2015).

Functional annotation

The biological significance of the DEGs could be understood
by performing GO enrichment analysis from O. sativa. A
typical descriptive model and functional annotation and
categorization to study the gene set information were pro-
vided by gene ontology. GO groups are arranged into three

categories, namely, biological process, cellular component
and molecular function. Genes with the minimum signifi-
cance level of (P\ 0.01) 1% were selected and were tested
against the background set of all genes with GO annotations.
The biological process, molecular functions, and cellular
components were investigated separately by web-based
software RICE NET DB. The GO terms found for biological
process are significantly enriched in protein amino acid
phosphorylation (GO:0006468, hyper P = 0.0000) (fig-
ure 4a) and homoiothermy (GO:0042309, hyper
P = 0.0000) (figure 5a) while for cellular component, the
enriched GO terms were membrane (GO:0016020, hyper
P = 0.0000) (figure 4b) and nucleus (GO:0005634, hyper
P = 0.0000) (figure 5b), and for molecular functions, the
enriched GO terms were DNA binding (GO:0003677, hyper
P = 0.0000) (figure 4c) and zinc ion binding (GO:0008270,
hyper P = 0.0000) (figure 5c).

Based on the GO analysis, the upregulated genes mostly
performed the DNA binding, i.e. transcription factor local-
ized in the membrane and participate in protein amino acid
phosphorylation activity, while downregulated genes mostly
performed the zinc ion binding factor localized in the
nucleus and participate in homoiothermy, which indicated

Figure 5. The top 10 enriched GO terms of downregulated DEGs. (a) Biological process for DEGs; (b) cellular component for DEGs;
(c) molecular function for DEGs.
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that the temperature regulation of plant was affected due to
downregualtion of biological process homiothermy. DNA-
binding transcription factor such as CaM7 regulates plant
response to light signals to reduce the probable damage
caused by drought stress. Post-translational modifications
(PTMs) involve protein phosphorylation which changes
protein function, protein–protein interaction and cellular
localization. Phosphorylated drought-responsive proteins
play major role in signalling, transcription and photosyn-
thesis, as well as in protein synthesis. The investigation of
physiological, molecular and proteomic studies related to
drought-responsive traits gives insights for further under-
standing of plant drought tolerance (Wang et al. 2016).

Biological network analysis

A set of 52 genes having fold change[± 1.5 and
P-value\ 0.05 was taken for construction of coefficient
correlation matrix. Of the 52 genes, 48 cleared the cut-off
and biological network was constructed (figure 6). Different
parameters of network obtained from microarray expression
data of rice during drought stress is shown in table 4.
Clustering coefficient is low which represents the property of
biological network.

The top 10 hub genes with their degree which were iden-
tified from network is shown in table 5. The maximum of
connectivity, i.e. degree of gene was 12 during drought stress.
These genes are differentially expressed during different
conditions and are most connected genes, having key role in
different biological process andmolecular function (figure 7).

The hub genes identified during network analysis were alpha
amylase isozyme 3D which belongs to gylcosyl hydrolase 13
family; myb family transcription factor APL required for the
phloem identity and regulates the expression of transcription
factor NAC045 (direct the sieve element enucleation and
cytosol degradation), they may also activate the transcription
of specific genes involved in phosphate uptake or assimilation.
Heat stress transcription factors (transcriptional regulators)
were identified as hub genes that specifically binds DNA of
heat shock promotor elements (HSE). OsWRKY71 (tran-
scription factor) identified hub gene might function as a
transcriptional regulator in rice defense signalling pathways.
WRKYproteins are a large family of transcription factors that
mainly participate in plant biotic stress responses, therefore
they are responsible for the development of drought stress
tolerance in rice (Liu et al. 2006).

Drought creates water deficiency in plants/rice which affect
the physiological functions of the rice as rice require a large
amount of water for its physiological functions. Hence, it

Table 4. Different parameters of biological network obtained from
microarray expression data of rice on the basis of Pearson’s coef-
ficient correlation during exposure of drought stress using cytos-
cape software.

Clustering coefficient 0.3409
Shortest path 337
Characteristic path length 1.7032
Average no. of neighbours 7.958
Network density 0
No. of nodes 48

Figure 6. Biological network constructed on the basis of Pearson’s coefficient correlation using the expression data of rice under drought
stress.
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adversely affects the yield of the rice crop. To overcome the
problem of drought and develop drought resistant/tolerant rice
varieties, the knowledge of themorphological, biochemical and
molecular mechanisms involved in rice against drought is very
important for rice breeders (Nahar et al. 2016).

In conclusion, 5686 genes were consistently expressed dif-
ferentially in O. sativa, among which 2089 genes were upreg-
ulated and 3597 genes were found downregulated. The meta-
analysis based on gene expression data of stressed rice have
shown the fundamental differences between normal and stres-
sed rice which includes DEGs along with their biological
function and it may contribute to identify potential candidate
genes of abiotic stress. Against drought stress, the proteins like
heat shock protein STI, heat shock proteinDnaJ,U-box domain
containing heat shock protein, hsp20/alpha crystallin family
protein were found upregulated to increase the defense mech-
anism of plants and on the other hand, proteins like

retrotransposon protein, diterpene phytoalexin precursor
biosynthetic process pathway and ent-kaurene synthase,
chloroplast precursor, CAMK_CAMK_like.47 - CAMK
includes calcium/calmodulin dependent protein kinases were
found downregulated to enhance the plants adaptation during
stress. In response to drought stress, intracellular Ca2? levels
changes and induce signalling pathways which help plants to
cope with the changing environmental conditions. CaM is one
of the important proteins that decodes Ca2? signals and regu-
lates activities of diverse proteins. The heat stress transcription
factors play a pivotal role in regulating the drought stress con-
ditionby regulatingheat shock elements/promoters and help the
plants to overcome this situation. This study gives a broad view
for researcherswith respect to the available differentmicroarray
dataset which can be used to find out how plants overcome
different stresses/diseases. The identified hub genes also pro-
vide a platform to develop a drought tolerant rice varieties.

Table 5. Hub genes obtained from biological network of drought stress data of rice (O. sativa).

Hub genes Degree Gene name

1 Os.24699.1.S1_at 12 myb family transcription factor APL (LOC4330431)
2 Os.10908.1.S1_a_at 12 Alpha-amylase isozyme 3D (LOC4345814)
3 Os.50642.1.S1_at 12 Heat stress transcription factor B-2a (LOC4336701)
4 Os.2292.3.S1_x_at 12 Heat stress transcription factor A-2a (LOC4334080)
5 Os.57152.1.S1_at 11 Uncharacterized (LOC4329890)
6 Os.46084.1.S1_at 11 Uncharacterized
7 Os.55479.1.S1_at 11 EID1-like F-box protein 3 (LOC9268106)
8 OsAffx.22585.1.S1_at 11 Probable WRKY transcription factor 30 (LOC4340188)
9 Os.8481.2.S1_at 11 Protein OPI10 homology (LOC4332189)
10 Os.5817.1.S1_at 11 dnaJ homology subfamily B member 6 (LOC4340388)

Figure 7. Biological networks constructed from expression data of rice under drought stress with hub genes, i.e. most connected genes.
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