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3Department of Mathematics, Illinois State University, Normal, USA

*Corresponding author (Email, oakman@ilstu.edu)

MS received 1 June 2018; accepted 15 April 2019; published online 5 August 2019

We constructed a discrete-time predator–prey model by adding prey refuge and Allee effects (predator saturation on prey
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positive fixed points and study the stability properties. The numerical simulations and bifurcation diagrams verify the
impact of refuge and the Allee mechanism on the system.
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1. Introduction

Predator–prey interactions are one of the important study
areas focused on by ecologists and mathematicians. The
dynamic relationship between predators and their prey is a
dominant theme especially in mathematical ecology due to
its universal applicability and importance. Traditionally,
most common studies in this arena focus on the dynamics of
a predator–prey system under varying effects and parame-
ters. Allee effects and hiding behavior of prey on the
dynamics of predator–prey interactions represent an impor-
tant portion of these studies. The hiding behavior of prey and
its impact on the predator–prey system have been studied by
numerous researchers, including Hassell and May (1973)
and Hassell (1978).

The prey refuge effect is a mechanism caused by hetero-
geneity in the environment. It refers to the fact that some
prey can be sheltered from danger or can be inaccessible to
predators. The refuge effect has been studied widely by
McNair (1986); Jana (2013). This effect contributes positive
feedback to the growth of prey while having a negative
impact on predators. The studies indicate that the effect of
refuge used by the prey has a substantial effect on the
coexistence of prey and predator, in that it increases the
equilibrium density of prey population, and stabilizes the
positive fixed point of the system.

Some studies on the prey refuge effect show that this
effect either decreases with increasing prey density, or
increases with both predator and prey density, and the

addition of prey refuge substantially reduces the risk of prey
extinction (Taylor 1984; Ma et al. 2009). However, it also
plays a destabilizing role under a very restricted set of
conditions (Ma et al. 2009).

The Allee effect is an important concept that may be
added to population models in order to make them more
realistic. In one-dimensional models with the Allee effect,
there is a positive relationship between the growth rate and
population size at low densities due to cooperation. On the
other hand, at high densities, competition is more dominant
than cooperation, so the Allee effect begins to lose its
impact. As a result, the relationship reverses itself at high
densities. Considering the Allee effect is important in
understanding why some populations get smaller and even
face extinction. Depending on the models used, the Allee
effect may cause a stabilizing (Scheuring 1999) or destabi-
lizing effect (Wang et al. 1999).

In this article, we consider the prey refuge and Allee
effects on predator–prey interaction by using both analytic
and numerical approaches. We construct a model that con-
tains a predator saturation term. The refuge effect is com-
monly considered to act on a fixed proportion of the prey
population; our approach provides an extended model to
study the dynamics of the predator–prey interaction under
various different refuge settings.

The model previously considered by Celik and Duman
(2009) and Ufuktepe et al. (2013), which includes
neither the Allee effect nor the prey refuge effect, is
given by
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Ntþ1 ¼ Nt þ rNtð1� NtÞ � aNtPt

Ptþ1 ¼ Pt þ aPtðNt � PtÞ;
ð1Þ

where Nt and Pt are the densities of the prey and predator
population at time t respectively. The growth parameter r

and the predation parameter a are both positive. Adding prey
refuge to (1) results in the following model (Rana et al.
2014):

Ntþ1 ¼ Nt þ rNtð1� NtÞ � ð1� dÞaNtPt

Ptþ1 ¼ Pt þ aPtðð1� dÞNt � PtÞ;
ð2Þ

where d 2 ½0; 1Þ is the proportion of prey that is not avail-
able to the predator because of the refuge effect. It is
important to mention that system (2) allows for prey repro-
duction while in refuge. For certain types of animals, this
may not be the case.

We now examine the dynamics of models under the Allee
effect.

2. Mechanisms of the Allee effect

The Allee effect depends on the concepts of cooperation and
the cost of rarity. It is a causal positive relationship between
the number of individuals in a population and their overall
individual fitness. If the population is too small, then for-
aging, hunting, finding mates for reproduction, or protection
becomes more difficult for individuals. As a result, when the
population is small, a positive relationship between the
population size and the growth should be expected.

Generally, Allee effects are classified into two categories:

(i) Allee effects caused by predator saturation, and
(ii) Allee effects caused by mate limitation.

Predator saturation causes an increase in individual prey
vulnerability, as prey population gets sparser. This mecha-
nism is observed in many species, including colonial sea-
birds, synchronously emerging insects, island fox and
American toad (Courchamp et al. 2008). In this study, we
add the predator saturation to the model as follows.

First, let us consider the probability of escaping from the
predator with a saturating functional response:
AðNÞ ¼ expð�b=ð1þ sNÞÞ, where b is the predation
intensity and s is proportional to the handling time, as shown
in Schreiber (2003). Here, the handling time can be con-
sidered as a function of the time spent in pursuing, hunting,
eating and digesting prey. On the other hand, the predation
intensity b depends on the distance between species, their
speeds and the proportion of successful attacks (Hassell
et al. 1976).

Mate limitation is probably the most observable mecha-
nism of the Allee effect. Cod, gypsy moth, alpine marmot
and Glanville fritillary butterfly are some species facing a
mate limitation effect (Courchamp et al. 2008). The formula

QðNÞ ¼ N=ðmþ NÞ is used for the probability of finding a
mate, where 1=m is an individual’ searching efficiency. We
add this effect to the predator, so we use
QðPÞ ¼ P=ðmþ PÞ.

3. The model

We now extend the model given in (2) by adding a new
predator saturation term to the prey population, as well as
mate limitation of the predator. This results in the following
system:

Ntþ1 ¼ Nt þ rNtð1� NtÞe�ðb=1þsNtÞ � ð1� dÞaNtPt

Ptþ1 ¼ Pt þ aPtðð1� dÞNt � PtÞ Pt

mþ Pt

� �
;

ð3Þ
where all parameters are positive. Model (3) is a realistic one
since some proportion of prey is less vulnerable to being
attacked due to sheltering. The environment is often not
homogeneous, and the refuge effect introduces spatial
heterogeneity to the population. Moreover, some of the prey
can escape from their predators not because of sheltering but
due to predator saturation. This is included in (3) as an Allee
effect. In addition, the predator may face difficulty in finding
mates at low densities, and this Allee effect plays an addi-
tional role in (3).

We obtain the fixed points (0, 0), (1, 0), as well as the
positive fixed point ðN�; ð1� dÞN�Þ, for 0� d\1 and
0\N�\1 in model (3).

Theorem. The coexistence fixed point ðN�; P�Þ exists and
is unique if s\1=b. Otherwise, there are either one or at
most two positive fixed points.

Proof The solution of the following system gives the
positive fixed point:

0 ¼ rð1� N�Þe�ðb=1þsN�Þ � að1� dÞP�

0 ¼ aP�ðð1� dÞN� � P�Þ P�

mþ P�

� �
:

ð4Þ

The second equation of the system is solvable if
ð1� dÞN� ¼ P�. By substituting this value into the first
equation, we obtain

0 ¼ rð1� N�Þe�ðb=1þsN�Þ � að1� dÞ2N�: ð5Þ
Let f ðNÞ ¼ rð1� NÞe�ðb=1þsNÞ and gðNÞ ¼ að1� dÞ2N

on N 2 ½0; 1�. By the extreme value theorem, f ðNÞ must
attain its maximum and minimum values on [0, 1].
Now, there are two roots that make f 0ðNÞ ¼ 0, which are

_N1 ¼ �2s�bs�
ffiffi
b

p
s
ffiffiffiffiffiffiffiffiffiffiffiffi
4þbþ4s

p
2s2

and _N2 ¼ �2s�bsþ
ffiffi
b

p
s
ffiffiffiffiffiffiffiffiffiffiffiffi
4þbþ4s

p
2s2

. It is

obvious that _N1\0 for all b[ 0 and s[ 0, so _N1 is not in

the domain [0, 1]. For _N2, we have
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_N2 ¼ 0 s ¼ 1

b

_N2\0 s\
1

b

0\ _N2\1 s[
1

b
:

8>>>>><
>>>>>:
Hence, for s� 1=b, there is no interior critical point. The

boundary values are f ð0Þ ¼ e�br and f ð1Þ ¼ 0. If s� 1=b,
then f 0ðxÞ\0, f 00ðxÞ\0. Thus, f is a decreasing concave
down function that takes its maximum value at 0 and the
minimum value at 1. Furthermore, because
gð0Þ ¼ 0\f ð0Þ, f cannot be below the linear function g,
which implies that they should intersect. The function gðNÞ
is linear with a positive slope að1� dÞ2. Then f ðNÞ and

gðNÞ intersect exactly once if s\1=b. If s[ 1=b, then _N2

is a critical point. We have f 00ð _N2Þ\0, so f attains its

maximum value at _N.
Under the condition s[ 1=b, the following hold:

f 0ðNÞ[ 0 if 0\N\ _N2

f 0ðNÞ ¼ 0 if N ¼ _N2

f 0ðNÞ\0 if _N2\N\1:

As a result f ðNÞ can intersect with the linear function more
than once. h

The numerical simulations for this theorem are shown in
figures 1 and 2.

Stability analysis of the fixed points: (0, 0), (1, 0) and
(N*, P*). The Jacobian matrix of the system (3) is given by

J =

QðN;PÞ að�1þ dÞN
� að�1þ dÞP2

mþ P
UðN;PÞ

0
@

1
A;

where

QðN;PÞ ¼ 1� að1� dÞPþ e�ðb=1þNsÞð1� NÞr
� e�ðb=1þNsÞNr þ e�ðb=1þNsÞð1� NÞNrsb

ð1þ NsÞ2 ;

and

UðN;PÞ ¼ 1� aðð1� dÞN � PÞP2

ðmþ PÞ2

þ 2aðð1� dÞN � PÞP
mþ P

� aP2

mþ P
:

Hence, we obtain

Jð0; 0Þ ¼ 1þ re�b 0

0 1

� �
;

with the eigenvalues k1 ¼ 1þ re�b [ 1 and k2 ¼ 1. Thus
(0, 0) is unstable fixed point.

The Jacobian matrix at (1, 0) is

Jð1; 0Þ ¼ 1� re�ðb=1þsÞ �að1� dÞ
0 1

� �
:

Since the eigenvalues are k1 ¼ 1� re�ðb=1þsÞ and k2 ¼ 1,
the point (1, 0) is a non-hyperbolic fixed point, and its
stability changes such that:

g

f
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Figure 1. Positive fixed point for the case s\ 1
b if b ¼ 0:1, a ¼ 1,

r ¼ 1, s ¼ 5 and d ¼ 0:1.
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Figure 2. Positive fixed point(s) for the case s[ 1
b; for b ¼ 10, a ¼ 2, r ¼ 1, s ¼ 4 and d ¼ 0:9, there are two positive fixed points. For

b ¼ 1, a ¼ 2, r ¼ 1, s ¼ 8 and d ¼ 0:6, there is one positive fixed point.
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(i) If b=ð1þ sÞ\ lnðr=2Þ, then jk1j[ 1, and (1, 0) is not
stable.

(ii) If b=ð1þ sÞ ¼ lnðr=2Þ, then jk1j ¼ jk2j ¼ 1, and the
stability cannot be analyzed via current methods.

(iii) If b=ð1þ sÞ[ lnðr=2Þ, then jk1j\1, and the Center
Manifold Theorem can be used.

Since our focus is to address the stability of the coexis-
tence equilibrium, we present the application of the Center
Manifold Theorem in the Appendix for the readers who are
interested in the details of its derivation.

In order to find the stability conditions of the coexistence
fixed point, we substitute ð1� dÞN� ¼ P�, and obtain

JðN�;P�Þ ¼
GðN�Þ �abN�

ab3N�2

mþ bN� 1� ab2N�2

mþ bN�

0
@

1
A;

where GðN�Þ ¼ �ab2N�

þ FðN�Þ FðN�Þð1þN�sÞ2�ð2N��1Þrð1þN�sÞ2�ðN��1ÞN�rsbð Þ
ð1þN�sÞ2 , FðN�Þ ¼

e�ðb=1þN�sÞ and b ¼ 1� d.
We will use the Trace-Determinant Plane Theorem in

order to examine the stability. The positive fixed point
ðN�;P�Þ is stable if the Jacobian matrix at this point satisfies
the following condition:

jtr Jj � 1\ det J\1

We find detðJðN�;P�ÞÞ ¼ a2b4N�3þGðN�ÞðmþbN�ð1�abN�ÞÞ
mþbN� , and

tr ðJðN�;P�ÞÞ ¼ 1þ GðN�Þ � ab2N�2
mþbN�.

(i) det J\1 if GðN�Þ\ mbN��a2b4N�3
mþbN�ð1�abN�Þ

(ii) tr J\1þ det J if GðN�Þ\1þ ab2N�

(iii) �1� det\ tr J if GðN�Þ[ �2ðmþbN�Þ�a2b4N�3�ab2N�2

1�mþbN�ð1�abN�Þ

Hence ðN�;P�Þ is stable if the following inequalities are
satisfied:

�2ðmþ bN�Þ � a2b4N�3 � ab2N�2

1� mþ bN�ð1� abN�Þ
\GðN�Þ\min 1þ ab2N�;

mbN� � a2b4N�3

mþ bN�ð1� abN�Þ
� �

4. Numerical simulations

In this section, we present the dynamic behavior of the system
(3) about the positive fixed point under different parameter
values. To compare the resulting models, phase-plane dia-
grams, time-series diagrams and bifurcation diagrams are
given. Although there is no explicit solution of the equation

0 ¼ rð1� N�Þexpð�b=ð1þ sN�ÞÞ � að1� dÞ2N�, by giv-
ing numerical values to the parameters, the fixed point can be
found approximately. By substituting this positive fixed point
into the Jacobian matrix, the corresponding eigenvalues can
also be found to decide the stability type of the model. The
following tables represent these approximate values.

In table 1, it is assumed that d ¼ 0, which means that no
prey can escape from its predators without encountering
them first. For different values of predator’s mate limitation
coefficient m, the behavior of the system is presented under
the assumption d ¼ 0, a ¼ 1, b ¼ 1, s ¼ 0:5 and r ¼ 5. For
these values we have s\1=b, so there is unique positive
fixed point, which is approximately (0.705, 0.705). The
values of a; b ; s; d and r are sufficient to find the coexis-
tence fixed point approximately. However, in the Jacobian,
there is also an Allee effect coefficient m, which does not
affect the value of the point, but may affect the stability. If
there is no mate limitation Allee effect (m ¼ 0) or m is small
enough, then the system exhibits spiral sink behavior. As m
increases, the system begins to oscillate, but remains stable.
Figures 3–5 consist of phase diagrams and time-series
graphs associated with table 1. Additionally, in the
tables below, we provide eigenvalues as reference, for which
certain stability types are observed. For instance, as given in
table 2, when jk2j\1 and k1\� 1, we observe oscillatory
saddle behavior.

In figures 3–5 we examine phase and time-series diagrams
under various values of m, while the parameters a ¼ 1,
b ¼ 1, s ¼ 0:5, r ¼ 5 and d ¼ 0 are kept fixed, and the
initials points are chosen as N ¼ 0:2 and P ¼ 0:2.

Table 2 and figures 6–8 show how the change of m affects
the dynamic behavior of the system, while the parameters
a ¼ 1, b ¼ 1, s ¼ 0:5, r ¼ 5 and d ¼ 0:5 are kept fixed. The
positive fixed point is an oscillatory saddle. The systems
have a two-periodic stable cycle for all values of m, but the
amplitude of the cycle of the predator decreases as m

increases. The initial values are taken as N ¼ 0:2 and
P ¼ 0:2.

Table 1. Effects of m with a ¼ 1, b ¼ 1, s ¼ 0:5, r ¼ 5 and d ¼ 0

m Positive fixed point Eigenvalues Stability type

0 (0.705, 0.705) k1;2 ¼ �0:125� 0:565i with jkj ¼ 0:82 Spiral sink
0.4 (0.705, 0.705) k1;2 ¼ �0:002� 0:127i with jkj ¼ 0:18 Spiral sink
0.5 (0.705, 0.705) k1 ¼ 0:197, k2 ¼ �0:155 Oscillatory stable
1 (0.705, 0.705) k1 ¼ 0:304, k2 ¼ �0:231 Oscillatory stable
5 (0.705, 0.705) k1 ¼ 0:515, k2 ¼ �0:353 Oscillatory stable
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Table 3 and figures 9–11 show the effects of m when there
is a high amount of refuge ðd ¼ 0:8Þ. The other parameters
are taken to be same as those in the previous tables.

Tables and diagrams given in this section show that when
the value of d changes, the dynamic behavior changes, and
the system doubles the periods of cycles. If d ¼ 0, then the
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Figure 3. Phase diagrams and time-series diagrams for m ¼ 0.
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Figure 4. Phase diagrams and time-series diagrams for m ¼ 0:5.

0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

N

P

N

P

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1.0

t

N
,

P

Figure 5. Phase diagrams and time-series diagrams for m ¼ 5.

Table 2. Effects of m with a ¼ 1, b ¼ 1, s ¼ 0:5, r ¼ 5 and d ¼ 0:5

m Positive fixed point Eigenvalues Stability type 2 periodic cycles

0 (0.91, 0.455) k1 ¼ �1:178, k2 ¼ �0:485 Oscillatory saddle {(0.72,0.46), (1.04,0.41)}
0.5 (0.91, 0.455) k1 ¼ �1:214, k2 ¼ �0:759 Oscillatory saddle {(0.7,0.44), (1.05,0.42)}
1 (0.91, 0.455) k1 ¼ �1:223, k2 ¼ 0:842 Oscillatory saddle {(0.7,0.44), (1.05,0.43)}
5 (0.91, 0.455) k1 ¼ �1:234, k2 ¼ 0:95 Oscillatory saddle {(0.7,0.43), (1.05,0.43)}
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positive fixed point is stable. With a moderate d value, there
is a two-periodic cycle, while with a great value of d the
period of the cycle is four. If the system has a cycle, then the

positive fixed point loses its stability. The predator popula-
tion oscillates, but the amplitude is so small that P� seems
stable. On the other hand, the magnitude of the oscillation is

Table 3. Effects of m with a ¼ 1, b ¼ 1, s ¼ 0:5, r ¼ 5 and d ¼ 0:8

m
Positive fixed

point Eigenvalues Stability type Four periodic cycle

0 (0.985, 0.197) k1 ¼ �1:507, k2 ¼ 0:8 Oscillatory saddle {(1.177,0.175), (0.58,0.186), (1.112,0.173), (0.728,0.181)}
0.5 (0.985, 0.197) k1 ¼ �1:509, k2 ¼ �0:943 Oscillatory saddle {(1.177,0.179), (0.579,0.181), (1.112,0.178), (0.728,0.18)}
5 (0.985, 0.197) k1 ¼ �1:51, k2 ¼ �0:99 Oscillatory saddle {(1.177,0.182), (0.579,0.183), (1.119,0.182), (0.728,0.183)}
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Figure 6. Phase diagrams and time-series diagrams for m ¼ 0.
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Figure 7. Phase diagrams and time-series diagrams for m ¼ 0:5.

0.2 0.4 0.6 0.8 1.0
0.20

0.21

0.22

0.23

0.24

0.25

0.26

N

P

N

P

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1.0

t

N
,

P

Figure 8. Phase diagrams and time-series diagrams for m ¼ 5.
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greater for prey, hence N� is unstable. As a result, the fixed
point ðN�;P�Þ is a saddle fixed point. As m increases, the
oscillation amplitude of the predator decreases. The system
goes through a period doubling bifurcation with respect to d,
and the bifurcation plots are shown in figure 12 at the values
a ¼ 1, b ¼ 1, s ¼ 0:5 and r ¼ 5.

5. Concluding remarks

In this paper a new discrete predator–prey model, namely
model (3), is proposed. This model contains a new
predator saturation term in addition to the mate limitation

of predators. Model (3) extends the models that are
commonly used to study prey–predator dynamics via
Allee effects. It contains the refuge effect term with and
without encounters with the predator. We have studied the
model analytically, and performed numerical simulations
to study its stability and bifurcation behavior. Our findings
indicate an interesting fact that the equilibria, even the
predator value in the equilibria, depend on the dynamics
of prey and the interaction between predator and prey.
Biologically this corresponds to the case where the
predator population is closely defined by the prey. As a
result, the effects added to prey dominantly impact the
model. We have also discussed the biological relevance of
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Figure 9. Phase diagrams and time-series diagrams for m ¼ 0.
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Figure 10. Phase diagrams and time-series diagrams for m ¼ 0:5.
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Figure 11. Phase diagrams and time-series diagrams for m ¼ 5.
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the model. The analytical and numerical results indicate
that the effects of prey refuge and Allee effects for pattern
formulation are substantial. We believe this understanding
will enrich the dynamics of the effects on the predator–
prey systems. The numerical simulations have shown that
our system is capable of generating complex temporal
dynamics. We have also presented a rigorous proof related
to the general behavior of the dynamical equation
depending on the conditions on the parameter space.
Specifically, we have obtained the existence and unique-
ness of positive fixed points. We have also examined the
effects of the stability of the origin, the extinction fixed
point and the positive fixed point on the dynamics of the
model.
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Appendix

If a non-hyperbolicmap is definedonR2, then its dynamicsmay
be analyzed by studying the dynamics on an associated one-
dimensional centermanifoldMc (Elaydi 2008). This theorem is
applicable only for the fixed point (0,0). Hence, we get the
following new system by setting xt ¼ Nt � 1 and yt ¼ Pt:

xtþ1 ¼ xt � e�ðb=1þsð1þxtÞÞrxtð1þ xtÞ � að1� dÞð1þ xtÞyt
ytþ1 ¼ yt þ aðð1� dÞð1þ xtÞ � ytÞy2t

mþ yt
:

ð6Þ
Let J� be the Jacobian matrix of the system (6). Then

J�ð0; 0Þ ¼ 1� re�ðb=1þsÞ �að1� dÞ
0 1

� �

Rewriting system (6), we obtain

xtþ1 ¼ ð1� re�ðb=1þsÞÞxt � aytð1� dÞ þ ~f ðxt; ytÞ
ytþ1 ¼ yt þ ~gðxt; ytÞ; ð7Þ

where

~f ðx; yÞ ¼ xðre�ðb=1þsÞ � re�ðb=1þsþsxÞð1þ xÞ þ að�1

þ dÞyÞ;
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Figure 12. The bifurcation diagrams for m ¼ 0, m ¼ 0:5 and m ¼ 5, respectively.
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Figure 13. The map P on the semistable invariant manifold x ¼
hðyÞ for b ¼ 4, a ¼ 2, r ¼ 5, s ¼ 1, m ¼ 2 and d ¼ 0:4.
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and

~gðx; yÞ ¼ aðð1� dÞð1þ xÞ � yÞy2
mþ y

:

By using the Taylor series expansion of e�ðb=1þsþsxÞ at the
point x ¼ 0, we approximate

e�ðb=1þsþsxÞ � e�ðb=1þsÞ þ ae�ðb=1þsÞsx

ð1þ sÞ2

þ be�ðb=1þsÞð�2þ b� 2sÞs2x2
2ð1þ sÞ4 þ Oðx3Þ

For simplification, let k ¼ e�ðb=1þsÞ. Then

~f ðx; yÞ � x kr � k þ bksx

ð1þ sÞ2 þ
bkð�2þ b� 2sÞs2x2

2ð1þ sÞ4
 ! 

ð1þ xÞ þ að�1þ dÞyÞ:
Since the invariant manifold is tangent to the corre-

sponding eigenspace by the Invariant Manifold Theorem,
assume that the map h takes the form

hðyÞ ¼ aðd � 1Þ
rk

yþ c1y
2 þ c2y

3 þ Oðy4Þ:

To compute c1 and c2, the following functional equation
should be solved:

hðyþ ~gðhðyÞ; yÞÞ � ð1� re�ðb=1þsÞÞhðyÞ � að1� dÞy
þ ~f ðhðyÞ; yÞ:

We have

c1 � � a2ð�1þ dÞ2 �1� 2s� s2 þ msbð Þ
k2mr2ð1þ sÞ2 ;

and

c2 � a2ð�1þ dÞ
2k3m2r3ð1þ sÞ4 ð2kð1� d þ mÞrð1þ sÞ4

þ að�1þ dÞ2ð4ð1þ sÞ4 þ 2msð1þ sÞ
ð�4þ ð�4þ mÞsÞbþ 3m2s2b2ÞÞ:

This leads to the equation

We have P0ð0Þ ¼ 1 and P00ð0Þ ¼ 2að1� dÞ=m[ 0 for
a[ 0, m[ 0 and d 2 ½0; 1Þ. Hence, by Theorem 1.5 in
Elaydi (2008), (1, 0) is a semistable fixed point if b=ð1þ
sÞ[ lnðr=2Þ (See figure 13).
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a að�1þ dÞ2mþ kð1� d þ mÞr
� �

y3

km2r

þ
a 1� d þ mþ ðað�1þ dÞ2m=krÞ � ða2ð�1þ dÞ3m ð1þ sÞ2 � msb

� �
=k2r2ð1þ sÞ2Þ

� �
y4

m3
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