Correspondence

High oxacillin, vancomycin and fluoroquinolone resistance amongst biofilm forming *Staphylococcus aureus* isolates from ulcerative keratitis infections

Dear Editor,

Increasing antibiotic resistance in *Staphylococcus aureus*, a leading cause of ulcerative keratitis in the developing world, is of great concern.^[1] Its ability to form biofilms on ocular surfaces enhances antibiotic resistance through several mechanisms.^[2] Understanding of the resistance patterns amongst clinical isolates is a prerequisite for devising better treatment strategies and measures to mitigate emerging antibiotic resistance.

A total of 42 independent *Staphylococcus* isolates from cases of ulcerative keratitis around Kanpur were evaluated for antibiotic resistance using antibiotic discs (Hi Media, Mumbai, India) as per CLSI guidelines.^[3] The ability of the isolates to form biofilms was characterised using the static microtitre plate assay.^[4] Microbiological and biochemical characterisation of the isolates was performed as per Bergey's determinative bacteriology.^[5] Of these, 75% (30/40) isolates were *S. aureus* and 23.8% (10/42) were coagulase-negative *Staphylococcus epidermis* and 4.7% (2/42) were *Micrococcus* sp.

85.72% (36/42) of the isolates were found to be high biofilm formers and 83% (35/42) were biofilm forming, multiple drug resistant (resistant to three or more classes of antibiotics). Pearson's correlation between biofilm formation and antibiotic resistance was found for *S. aureus* isolates of 0.6. Table 1 details the percentage

resistance of total and biofilm forming isolates to the various antibiotics. Of the total isolates, 83.3% (35/42) were found to be oxacillin resistant, 57.14% (24/42) were ceftriazone resistant, 54.7% (23/42) were vancomycin resistant and 47.6% (20/42) were tobramycin resistant. It is alarming to note the high percentage of resistance to a number of antibiotics preferentially used for treatment of ocular infections, such as fluoroquinolones. Frequent usage of moxifloxacin in the treatment of ocular infections may be the cause of 76.2% (32/42) resistance to the fourthgeneration fluoroquinolone moxifloxacin over ofloxacin (30.9%; 13/42) and levofloxacin (40.4%; 17/42). Low resistance is reported to gentamicin (26.1%; 11/42) which is less frequently used in ocular infections due to problems of poor ocular penetration. Low resistance to extended β lactamase antibiotic imipenem (4.7%; 2/42) is likely a consequence of drug usage only in emergency situations. Judicious use of emerging drugs is advisable as high antibiotic resistance is being measured in biofilm forming, methicillin-resistant S. aureus (MRSA) ocular infections to the most commonly used ophthalmic drugs.

Acknowledgement

Financial support from DST and DAE, Government of India, is gratefully acknowledged.

References

1. Behlau I, Gilmore MS. Microbial Biofilms in Ophthalmology

Table 1: Antibiotic resistance and biofilm formation in ulcerative keratitis isolates											
Isolates	Antibiotics						ics				
		CTR	GEN	IPM	LE	MO	OF	OX	TB	VA	
S. aureus N = 30	Total	17 (56.5)	10 (33.3)	1 (3.3)	13 (43.3)	23 (76.6)	10 (33.3)	26 (86.6)	17 (56.5)	17 (56.5)	
	Biofilm	16 (53.3)	9 (30)	1 (3.3)	12 (40)	21 (70)	9 (30)	24 (80)	16 (53.3)	13 (43.3)	
	formers $N = 27$	1									
S. epidermis	Total	6 (60)	0(0)	0(0)	3 (30)	8 (80)	2 (20)	8 (80)	2 (20)	5 (50)	
N = 10	Biofilm	4 (40)	0(0)	0(0)	2 (20)	4 (40)	1(10)	4 (40)	0(0)	2 (20)	
	formers $N = 8$										
Micrococcus sp.	Total	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	
N = 2	Biofilm	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	1 (50)	
	formers $N = 2$										
Total $N = 42$	Total	32 (76.2)	11 (26.1)	2 (4.7)	17 (40.4)	32 (76.2)	13 (30.9)	35 (83.3)	20 (47.6)	23 (54.7)	
	Biofilm formers	21 (50)	10 (23.8)	2 (4.7)	15 (35.7)	26 (61.9)	11 (26.1)	29 (69)	17 (40.4)	16 (38)	

CTR, Ceftriazone (30 mcg); GEN, Gentamicin (10 mcg); I, IPM (10 mcg); LE, Levofloxacin (5 mcg); MO, Moxifloxacin (5 mcg); OF, Ofloxacin (5 mcg); OX, Oxacillin (1 mcg); TB, Tobramycin (10 mcg); VA, Vancomycin (30 mcg) Figure within parentheses indicates percentage resistance

July-September 2011 Correspondence 313

- and Infectious Disease. Arch Ophthalmol 2008;126:1572-81.
- Schaefer F, Bruttin O, Zografos L, Guex-Crosier Y. Bacterial keratitis: A prospective clinical and microbiological study. Br J Ophthalmol 2001;85:842-7.
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Disc Susceptibility Tests, CLSI. 2008;28:1
- O'Toole GA, Kotler R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceed via multiple, convergent signaling pathways: A genetic analysis. Mol Microbiol 1998;28:449-61.
- Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST. Staphylococcus spp. In: Bergey's Manual of Determinative Bacteriology, 9th Ed. Baltimore, Maryland: Williams and Wilkins; 1994. p. 544-51.

S Singh, R Katiyar, *SD Kaistha

Department of Microbiology, CSJM University, Kanpur, Uttar Pradesh, India

*Corresponding author (email: <shilpakaistha@gmail.com>)

Received: 14-03-2011 Accepted: 13-06-2011

Access this article online						
Quick Response Code:	Website:					
同级级级国	www.ijmm.org					
	DOI:					
	10.4103/0255-0857.83921					