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INTRODUCTION 

Minimally invasive surgery performed by inserting an 

endoscope and surgical instruments into the body cavity 

through small incisions to improve a patient's quality of 

life is commonly used in many surgical fields. This 

procedure provides several benefits to patients by 

shortening both the degree of postoperative pain and the 

period of recovery. However, skills of doctors should be 

very high, which increases the burden on doctors. To 

reduce the burden on doctors, assistance is provided by 

medical robots and navigation systems using medical 

images.1,2 Furthermore, there is great interest in assisting 

and automating surgical procedures. We focused on 

assisting and automating hemostatic procedures 

frequently performed in surgical procedures.3 The 

assisting and automating hemostatic procedures 

contribute to the safety of surgery. It is difficult for 

doctors to find all bleeding and hemostatic regions. There 

are multiple studies on reducing the invasiveness of tissue 

coagulation by energy devices because tissue coagulation 

by energy devices often causes loss of normal tissue.4-6 
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Background: Abdominal cavity irrigation is a more minimally invasive surgery than that using a gas. Minimally 
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the time series class change of the surgical field during the hemostatic procedure. 

Results: The accuracy of our classifier was 98.3% and the processing cost to perform real-time was enough. 

Furthermore, it was conceivable to quantitatively indicate the completion of the hemostatic procedure based on the 

changes in the bleeding region by ablation and the hemostasis regions by tissue coagulation.  

Conclusions: The organs, bleeding sites, and hemostasis regions classification was useful for assisting and 
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Many studies have attempted to minimize the 

invasiveness of tissue coagulation by controlling the 

output of the device. We considered that it is possible to 

provide feedback to the coagulation device and reduce 

invasiveness by monitoring the bleeding region and 

quantitatively judging that hemostasis is complete. 

Moreover, real-time detection of bleeding and hemostatic 

regions would assist doctors and reduce the burden on 

doctors. Therefore, we aimed to develop a method for 

assisting and automating hemostatic procedures. We 

began by hypothesizing that it is important to identify the 

bleeding region at the beginning of surgery to assist and 

automate the hemostatic procedure. At the end of the 

procedure, it may be necessary to detect the regions of 

hemostasis because of the application of an energy device 

such as holmium lasers and bipolar devices to an organ. 

The purpose of study was to devise a means for detecting 

organs, bleeding sites, and hemostatic regions in the 

endoscopic view.  

In this paper, we focused on a new technique performed 

in liquid (water-filled laparoendoscopic surgery, 

WaFLES), because endoscopic images using liquid are 

clearer than those using gas.7 This liquid surgical 

technique is majorly used in the field of urology owing to 

its high safety and low invasiveness.8 Using the irrigation 

liquid, the region was cleaned, so it was possible to 

monitor the organs, bleeding sites, and hemostatic 

regions.9 In addition, we considered that clear endoscopic 

images were effective for detecting organs, bleeding 

sites, and hemostatic regions.  

By developing a new detection method using the 

improved endoscopic view provided by the WaFLES, we 

aimed to propose a surgical system that was minimally 

invasive and that reduced the burden on doctors.  

METHODS 

Our system design and plan of the detection method 

The hemostatic procedure consists of detection of 
bleeding within the surgical area and coagulation of the 
bleeding tissue with the application of an energy device. 
Based on this workflow of hemostasis using an energy 
device, a part of the system necessary for assisting and 
automating the hemostasis procedure has been depicted 
in (Figure 1). We focused on constructing a method of 
detecting the bleeding and hemostasis regions, which is 
the most important factor in our system. The bleeding and 
hemostatic regions have various shapes and edges on the 
images. Therefore, we developed a detection method 
using machine learning with a focus on the change in 
color information due to the energy device. Studies on the 
detection of bleeding in endoscopic images have been 
based on the color feature descriptor, texture feature 
descriptor, and edge feature descript to in the field of 
diagnosing using wireless capsule endoscopy.7-13 In a 
previous study aimed at assisting the hemostasis 
procedure, the authors used a bleeding region detection 

method in endoscopic surgery with a focus on detection 
accuracy and calculation cost of a linear support vector 
machine (SVM) based on the color feature descriptor.14,15 
However, previous studies did not attempt to detect the 
hemostatic region. Therefore, in order to develop our 
system, we constructed a method of detecting three 
regions: the organ region, bleeding region, and 
hemostatic region. We adopted region detection using 
linear SVM with multiple color feature descriptors, while 
maintaining the real time property and detection 
accuracy. 

 

Figure 1: Proposed surgical robotics system design 

and workflow of our proposed hemostatic system 

using WaFLES technique. 

The linear SVM and the multi-classification 

The SVM method is a statistical classification method 
using machine learning. The focus point was that the 
higher accuracy classification was possible using a few 
feature descriptors than the other method using machine 
learning so it was could reduce the calculation cost. It 
was considered to be a suitable method for us aiming at 
real time classification. The SVM classifiers were applied 
by calculating the best hyperplane using data points.15 In 
general, hyperplanes are treated as optimization 
problems, as shown in equation. 

arg minw

1

2
|w|2 + C ∑ ξn

N

n=1

 

s. t.  tn(wTφ(xn) + w0) − ξn ≥ 1 
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where w is the gradient of the hyperplane, w0 is the 
intercept, tn is the label corresponding to data point xn, C 
is the parameter that determines the trade-off between the 

penalty and the margin, ξn  is the slack variable, given 
as.15 

ξn = | tn − (wTφ(xn) + w0)| 

And φ(∙) is the kernel function. In the linear SVM, the 

kernel function is applied to equation. 

φ(xn) = xn 

In general, Lagrange’s undetermined multiplier method is 

used to solve the minimization problem of equation (1). 

In this study, we used the sequential minimal 

optimization (SMO) algorithm.16 When a new xn is given, 

y is obtained as follows by solving the optimization 

problem. 

y = wTxn + w0 

In above equation, linear SVM classification was 

performed according to the sign of y when a new xn was 

given. In our study, we tried multiclass classification, 

which has not been done in previous studies. We used the 

multiclass model that does binary classifications as 

necessary of number.16 

The selecting the color feature descriptors 

Based on previous research, we began by selecting the 

color feature descriptors. Then, we focused on the 

sharpness of the endoscopic images in the liquid because 

the contrast between S value and V value in the hue, 

saturation, value (HSV) model which was the hexcone 

model.17 These values were the better in liquid than in 

gas. Previous studies have demonstrated the usefulness of 

the S value in the detection of bleeding regions. 

Furthermore, the color information of the hemostatic 

region in the endoscopic image in liquid was 

investigated, and the color information of the organ 

region that was believed to be incorrectly identified as the 

hemostatic region was randomly extracted at 256 pixels. 

Subsequently, the contrast in the V value tended to be 

different between the organ and hemostatic regions. 

Furthermore, it was found that by adding the S value used 

in previous studies, each value demonstrated a high value 

in the hemostatic region (Table 1 and Figure 2). 

Table 1: S and V values (n=256). 

 Organ Hemostasis 

S (mean ±SD) 0.18±0.05 0.19±0.02 

V (mean ±SD) 0.69±0.19 0.88±0.07 

From the viewpoint of calculation cost, it was considered 

that up to three color feature descriptors would be good; 

therefore, we used a new descriptor F3 equation (5) that 

was obtained by adding the V value to the color feature 

descriptors proposed in the conventional method in order 

to improve the detection accuracy of the hemostatic 

regions.14 Below equation summarizes the color feature 

descriptors proposed in this paper. 

F1 =  R(i)/(R(i)+G(i) + B(i)) 

F2 =  G(i)/R(i) 

F3 =  S(i)V(i) 

where, R(i), G(i), and B(i) were the RGB values and S(i) and 

V(i) were the saturation and lightness at the ith pixel. In 

equation 5, the descriptors F1 and F2 were adopted from 

previous studies because we thought they would 

contribute to the detection of bleeding region. The 

descriptor F3 was a newly proposed descriptor in this 

paper because we thought it was effective in detecting the 

hemostasis region. 

 

Figure 2: Descriptor in 3D space. 

The create dataset and verification of SVM classifier 

Our training database was created. The objects were 

endoscopic images of partial non-cancerous nephrectomy 

specimens in three animal experiments specific pathogen-

free pigs weighing about 30kg performed by urologists 

using WaFLES with the approval of the local ethics 

committee for animal experiments. In the experiment, the 

endoscope was manually fixed. Our dataset was recorded 

with an endoscope (Karl StorzTM camera system; 30 fps, 

1920×1080). From three animal experiments with 

different lighting, we obtained a total of three hemostatic 

procedures, for example one of the hemostatic procedures 

shown in (Figure 3).  

Under the guidance of a urologist, we obtained the 

ground-truth label from 90 images, 30 images from each 

hemostatic procedure. From these endoscopic images, 

pixels of organs, bleeding, and hemostatic regions were 

randomly extracted at 106496 pixels, totaling 319488 

pixels (Figure 3). 
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Figure 3: For example, target pixels (white triangles) 

obtained from the endoscopic videos in WaFLES.. 

Then, the linear SVM classifier was learned by our 

training database and verified by five-part cross-

validation using MATLAB® R2018a (Mathworks, Inc., 

Natick, MA, USA). In cross-validation, we used the K 

fold method.21 Cross-validation is used to evaluate the 

generalization performance of the learning model. In this 

paper, the SVM classifier was sufficiently generalized 

with five-part cross-validation; then, the prediction 

accuracy was evaluated. In verification, true positive 

(TP), false positive (FP), true negative (TN), and false 

negative (FN) rates were calculated from the rate of the 

pixels classified in each region. Accuracy was obtained 

according to equation. 

Accuracy =  
TP + TN

TP + FP + TN + FN
 

By comparing the SVM classifier using our descriptors 

with the conventional descriptors, the accuracy level of 

the SVM classifier was guaranteed using our training 

database.14 We applied the SVM classifier to images not 

included in our dataset and confirmed detection accuracy 

based on the ground-truth label created by a urologist. 

Evaluation of the calculation cost and our detection 

method 

In order to calculate the cost of our SVM classifier, the 

processing time was measured by adapting to endoscopic 

images of 720×480 pixels. Our classification was 

implemented using a computer with intel core i7-6700K 

(4.00 GHz 4-core/8-thread CPU) and 16.0GB RAM. 

Open MP was introduced to run in multi-thread mode 

based on the CPU. The programming language used was 

C/C++. 

As part of the verification of the effectiveness of our 

method, we set the region of interest (ROI) manually in 

the endoscopic images of non-ischemic partial 

nephrectomy using WaFLES in an animal experiment. 

Subsequently, areas of bleeding by ablation and 

hemostasis by coagulation using the energy device were 

detected, and changes in each region size and effects of 

the procedure on the endoscopic image were compared. 

RESULTS 

The evaluation of the prediction accuracy of the classifier 

using our descriptors revealed that the classification 

accuracy was 98.3%, which was better than that with the 

conventional descriptors 95.6%.17 Figure 4 demonstrates 

the confusion matrices and TP and FP rates of each 

region in the classifier using our descriptors and the 

conventional descriptors. 

Figure (5 and 6) summarize the frames of visualized 

images of the classification results based on our method, 

with green indicating the bleeding region and blue 

indicating the hemostatic region. Figure 5 summarizes the 

organ and bleeding regions alone and the organ and 

hemostatic regions alone.  

 

Figure 4: Confusion matrices and TP and FN rates in 

each region. 
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Figure 6 summarizes the results with coexisting organ, 

bleeding, and hemostatic regions. The detection accuracy 

of the bleeding area in Figure 5(a) was 98.8%. The 

detection accuracy of the hemostatic region in Figure 5(b) 

was 94.1%. 

 

Figure 5: Detection and visualization of (a) the organ 

and green indicating the bleeding region and (b) the 

organ and blue indicating the hemostatic region. 

Regarding calculation costs, the processing time was 

21.6±0.6ms (mean ±SD) (N=30). Verification results on 

the effectiveness of our method (Figure 7) demonstrated 

manually ROI (400×400 pixels) used for verification; 

then, the hemostasis procedure proceeded in time series 

from label 0 to 7 in the image. 

At this time, our method was applied and the change in 

the size of each region in the image was evaluated 

(Figure 8). In the Figure 8, the green line shown that the 

change in the bleeding region, the blue line shown that 

the change in the hemostasis region. 

 

Figure 6 (a-d): Detection and visualization of 

coexisting organ, bleeding, and hemostatic regions. 

 

Figure 7: Procedure events on endoscopic images 

between time series 0 and 7. 

 

Figure 8: Changes in the size of each region using 

images of Figure 7 time series from 0 to 7. 

DISCUSSION 

Detection using our descriptors 

Previous studies have proposed region detection using 

linear SVM based on the calculation cost and detection 

accuracy of the bleeding region.10-17 A new color feature 

descriptor was proposed using S and V values in the HSV 

model of identifying the bleeding region in liquid because 

in addition to characteristic color features in the 

hemostatic region, the higher clarity of endoscopic 

images in the liquid would have an effect as well. An 

endoscope has a very strong light source at its tip. 

Therefore, when gas is used, the light is reflected more 

frequently over organs and tissues, and halation is likely 

to occur, thereby, decreasing image contrast. Compared 

with gas, there is a tendency for light to diffuse more in 

liquid; thus, high contrast can be achieved. The contrast 

between the S and V values in liquid becomes high since 

the saturation and lightness in the HSV model are 

susceptible to the lighting environment; we believe that 

the proposed color feature descriptor contributed to the 

classifier in the hemostatic regions. In comparisons 

(a) (b) 

(c) (d) 
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between the conventional color feature descriptors and 

the matrices of our color feature descriptors in the results 

of the evaluation of prediction accuracy, our classifier’s 

distinction between the organ and hemostatic regions was 

better. Therefore, we believe that that the three-region 

classification using our color feature descriptors is useful 

and has sufficient accuracy. 

Measurement of calculation cost 

It was possible to process approximately 21ms of an 

endoscopic image of 720x480 pixels; therefore, our 

classifiers are adaptable to the general 30fps endoscopic 

videos. In the present study, parallel processing on the 

CPU was performed, which was feasible with a general-

purpose computer. To further improve the processing 

time, various possibilities such as image processing based 

on the GPU were considered. Ultimately, verification of 

the processing time when running the workflow, as 

shown in Figure 1, was considered necessary. 

Evaluating our detection method 

In the verification results of the effectiveness of our 

method (Figure 7), we picked the same area on which the 

procedure was performed using the manually set ROI. 

Figure 7 (0) demonstrates the initial state of the organ, 

and the bleeding and hemostatic regions were not 

detected in Figure 7 (0). Figure 7 (1) demonstrates that 

the surface of the organ was coagulated with an energy 

device, and the hemostatic region was detected in Figure 

8 (1). In Figure 7 (2), organ ablation was performed using 

forceps, and it was understood that bleeding was 

occurring; subsequently, the detection of the bleeding 

region is shown in Figure 8 (2). Furthermore, the size of 

the hemostatic region decreased since bleeding was 

flowing on the anterior surface of the coagulated organ. 

In Figure 7 (3-7), we confirmed that the hemostatic 

procedure had started. The peak size of the bleeding 

region was confirmed in Figure 8 (4) in comparison to 

Figure 8 (3) since multiple episodes of bleeding occurred 

at the beginning. Bleeding stopped as time passed after 

the hemostatic procedure was performed Figure 7 (5-7). 

The workflow of the hemostasis procedure using energy 

devices, by which the size of the hemostatic region 

increases was quantitatively defined by the change in the 

value in Figure 8. Therefore, it was demonstrated that the 

detection of bleeding and hemostasis by the energy 

device could be performed using our method by 

monitoring ablation and coagulation regions.  

Benefits of minimal invasiveness and burden reduction 

In WaFLES, by gentle irrigation, the distribution of blood 

was not diffuse and bleeding points could be stably 

observed. Furthermore, it was easy to detect the change 

in the state of organs by the hemostatic technique since it 

was easy to observe the hemostatic regions. Even when 

gas is used, the surgical field is cleaned often; therefore, 

it is possible to apply our method in environments similar 

to that in WaFLES.22-24 Furthermore, the detection of the 

hemostatic region can result in the possibility of making 

the procedure less invasive. 

Limitations  

In our method, we detected the bleeding region on 

endoscopic images in real time and quantified the size of 

the region. Furthermore, processing the data while 

excluding the motion of the endoscope and organ was 

required for tracking the ROI setting. The solutions 

included adapting the self-position estimation method of 

the endoscope, detection of endoscope motion by the 

three-dimensional position measuring device, and 

calculating optical flow using landmarks in the image.25,26 

Therefore, our future work will be focused on guiding 

surgical robots to the detected bleeding region based on 

the feedback from the hemostatic procedure and alert 

from the bleeding region and hemostatic region 

quantitative evaluation shown. These advancements can 

help automate the assistance and evaluation of the 

method. Furthermore, we will develop robot hardware 

and integrate our method to automate the procedure and 

evaluate its performance.  

CONCLUSION 

We proposed a method for automation and assistance in 

hemostatic procedures. Real-time region detection of the 

hemostatic procedure by linear SVM was realized by 

newly adding identification of the hemostatic region. In 

our method, we used the new color feature descriptor and 

focused on the change in color information in endoscopic 

images owing to bleeding from organs and tissue 

coagulation owing to the use of energy devices. The 

accuracy of the classifier was 98.3% and the processing 

time was approximately 21 ms in images of 720×480 

pixels; therefore, it was possible to detect three regions 

on endoscopic images of the hemostatic procedure using 

our method in real-time. Additionally, by measuring the 

bleeding and hemostatic regions during the hemostatic 

procedure in time series, assistance can be provided to the 

doctor by annotating the end of the hemostatic procedure. 

Moreover, the procedure can reduce the invasiveness by 

reducing the coagulation of normal tissues using energy 

devices. In our future studies, we will demonstrate that a 

medical robot that automates the hemostatic procedure by 

controlling the detection of the hemostatic region as a 

trigger can become a reality based on our method. 
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