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ABSTRACT

Coronary artery anomalies (CAA) are rare congenital abnormalities with incidence of
about 1% in the general population.2Unfortunately, despite the low incidence, CAA can
cause sudden cardiac death. Identifying the course of the artery is critical for appropriate
management. We present a rare case of the left coronary artery arising from the right
coronary ostium with special emphasis on normal coronary artery development as
possible insight for treatment of diseased heart.
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1. INTRODUCTION

Coronary artery anomalies (CAA) are rare congenital abnormalities in part due to lack of
defined symptoms [1]. In large longitudinal studies, the incidence of coronary anomaly is
about 1% in the general population and 0.3% at autopsy [2]. Unfortunately, despite the low
incidence, they account for 19% of sudden cardiac deaths (SCD) in athletes and is the
second most frequent cause of exertion related cardiac deaths [1,5]. In general, CAA is

Case Study



Sidiqi et al.; CA, 2(1): 41-48, 2014; Article no. CA.2014.003

42

diagnosed incidentally during angiography, but rare potential life threatening events such as
arrhythmias, syncope, myocardial infarction has been documented [4].

Coronary artery anomalies have been well documented in the literature with published
prevalence of the different variants, symptomatology and prognosis [1-5]; however, our
understanding of coronary development and origin of coronary anomalies remains poor. We
present a rare case of left coronary artery arising from the right coronary ostium. More
specifically, we focus on the development of normal coronary vasculature and structural
proteins involved in endothelial cell (EC) injury leading to coronary artery disease (CAD).

2. CASEREPORT

A 54 year –old Caucasian female with history of hypertension, hyperlipidemia and smoking
was referred to us for evaluation after her outpatient preoperative adenosine cardiolite stress
test demonstrated moderate size reversible defect in the anterior wall consistent with lesion
in the left anterior descending artery territory. The patient denied chest pain, shortness of
breath, or palpitations, though she did admit to having left arm numbness and tingling over a
2-3 week span. Physical examination was benign except for morbid obesity.

A cardiac catheterization was recommended because of abnormal stress test findings and
atypical chest pains. The coronary angiography revealed no angiographic disease but
demonstrated anomalous left coronary artery arising from right coronary cusp, arising from
the same trunk as the right coronary artery Figs. 1-2. The vessel travels and then gives
distribution to the anterior descending and circumflex artery. The left ventriculogram was
normal.  A right heart catheter was placed which revealed normal right heart pressures.

Pulmonary angiography Fig. 2 was performed to establish the course of the coronary artery
but was not diagnostic. Follow up coronary CT was performed to confirm the course of the
left main coronary artery Figs. 3-7.

Fig. 1. Angiogram showing left main coronary artery arising from
right coronary artery.

LMCA = Left Main Coronary Artery; RCA = Right Coronary Artery
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Fig. 2. Pulmonary artery catheter (PA catheter) in the main PA (MPA) with contrast
injection to delineate course of anomalous LMCA

Fig. 3. Volume rendering coronary CTA
showing anterior course of the LMCA

with respect to main pulmonary artery.
RCA=Right Coronary Artery; LMCA=Left Main

Coronary Artery;
PA=Pulmonary Artery

Fig. 4. Volume rendering CTA of
anomalous LMCA arising from right

coronary artery ostium.
RCA=Right Coronary Artery; LMCA= Left Main

Coronary Artery;
PA=Pulmonary Artery
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Fig. 5. Coronary CTA showing shared
trunk of RCA and LMCA.

LMCA = Left Main Coronary Artery; RCA = Right
Coronary Artery

Fig. 6. cCTA showing shared trunk of
RCA and LMCA.

cCTA = coronary CT Angiogram, RCA = Right
Coronary Artery; LMCA = Left Main Coronary

Artery

Fig. 7. CT angiogram showing shared ostium between LMCA and RCA.
LMCA = Left Main Coronary Artery; RCA = Right Coronary Artery

3. DISCUSSION

Documented incidence of CAA is reported <1% in the general population and 0.3% in
autopsies. Majority (80%) are benign with respect to the anatomical variant and symptoms;
however, 20% have life threatening variants resulting in SCD with exertion [4]. Our patient
had a rare variant of left main coronary artery (LMCA) arising from the same ostium as the
right coronary artery (RCA) and anterior to the pulmonary artery, which has been
documented<0.15% in the literature. In this variant it is mandatory to determine whether the
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course is malignant (between the aorta and pulmonary artery) or benign (anterior or
posterior to the aorta). Fortunately, our patient had a benign course. Additional variants,
incidence and potential clinical significance have been well established in the literature
[1,2,4,5].

Despite their significance, the complete pathway for development of the coronary anatomy
has not been fully elucidated. Hutchins and others developed studies providing a descriptive
picture of the normal embryological stages of the human heart using histology with 3D
reconstruction [8,21]. In normal development, the first feature of coronary vasculature is
appearance of isolated individual blood islands with endothelial cells encapsulating
nucleated red blood cells (RBC) during stage 13-15 of embryogenesis. Recent studies
indicate strong association between coronary morphogenesis and epicardium. Whether
initial coronary plexus arise from ventricular endocardium or sinus venous is still
controversial. However, primary coronary plexus arelocated beneath the epicardium before
migrating deeper into the myocardium to differentiate into coronary arteries and capillaries.

Over the next few weeks, there is continuous formation and loss of connection between the
vascular plexus in the epicardium and myocardium. However, histological studies also show
avascular zone around the endocardium during this stage, indicating absence of
communication between the endocardium and the developing coronary vascular plexus.
Grossly, blood islands appear in the apex at sites of indentation, the interventricular sulcus
followed by atrioventricular groove and finally over other regions of the ventricle. Subsequent
proliferation of the blood island cells leads to coalescence and formation of rudimentary
vascular network. The coronary arterial vasculature forms after the development of venous
plexus. Further epicardial formation of the blood islands was associated with loss of
myocardial cardiac jelly, situated between the intraventricular cavity and myocardium. These
rudimentary vascular plexus migrate up towards the base and the aorta.

Since clonal analysis studies revealed single subepicardial endothelial cells (EC) giving rise
to both coronary veins and arteries, what factors are responsible for their final identity?
Recent studies have improved our understanding of the initial growth factors and signaling
pathways responsible for the primary differentiation of arterial from venous system [21]. By
default, sprouting sinus venosus (SV) EC have venous markers such as Ephb4, Vegfr3, Np2
and COUP-TFII. As cells migrate away from SV, venous biomarker expressions begin to
express arterial markers such as ephrinB2, Dll4, Notch and Dep [22]. The switch appears
more temporo-spatially related but local growth factors such as fibroblast growth factor-1
(FGFR-1) and vascular endothelial growth factor (VEGF) appear to play a significant role in
modulating these cell markers via paracrine and autocrine mechnisms [23]. Although arterial
fate is believed to be preprogrammed, NOTCH signaling pathway which is upregulated by
VEGF is critical for coronary vessel formation [24]. In knockout mice with Notch target
receptors Hey1 and Hey2 mutations, the mutant mice phenotype failed to express arterial
markers resulting in cardiac and coronary defects.

For long time, coronary arteries were assumed to bud from the aorta, specifically from the
right and left coronary sinuses adjacent to the pulmonary artery trunk. Initial experiments
failed to document apoptosis thus it was hypothesized that the geometric shape and wall
tension of the aortic sinuses determined the development of coronaries arising from the
aorta. It was proposed that the saddle shaped or catenoidal configuration of the aortic sinus
with low net curvature resulted in increased wall tension in contrast to where the wall had a
more positive curvature with less wall tension. The increased wall tension lead to budding of
the endothelial tissue to form the initial right and left coronary ostia connection with the
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vascular plexus [8]. Unfortunately, this did not provide explanation for mechanism of why the
right and left ostia were more preferentially selected.

This paradigm was challenged by recent studies [17]. Despite new insight, exact mechanism
for the connections between the vascular plexus and the aorta are still debatable. It was
suggested that neural crest cells (NCC) may have a role since the ablation of NCCs result in
anomalies between the aorta-coronary artery connections. However, subsequent studies
confirmed neural crest cells are responsible for maintaining rather than genesis of coronary
arteries [18,19]. More recent experiments with avian and rodents indicate that the vascular
plexus surround the aorta and pulmonary trunk that then randomly penetrate the aortic wall
in all three of the sinuses. Selection of right and left ostia is determined by local growth
factors of specific concentration and density around the aortic sinus [20]. The final budding of
the coronary arteries occur via apoptosis, allowing the penetrating vascular plexus to form
channels with the aorta; non-ostial cells disappear. Exact mechanism of right and left ostia
being selected is unknown but studies have shown that sites adjacent to the high VEGF
concentration determined the ostia. The site of sinus aortic apoptosis for EC penetration into
aortic wall is at sites with high VEFGR-2 density. Absence or loss of VEGFR-2 and
subsequent Notch signaling results in coronary anomalies.

The coronary ostia and main coronaries are synthesized between days 44 and 49 of
development (Stages 18-20) [8]. During this time, there are many factors that affect the
formation of these coronary arteries, and thus an alteration in one of these factors could be
the cause for the anomaly. Dysregulation of family of fibroblast growth factors (FGF) such as
VEGF can delay formation or cause various abnormalities [9]. Hypoxia or hyperoxia can lead
to defects in the coronary vasculature by affecting the expression of proteins. The HIF-1α
protein is expressed at an increased level during hypoxic and hyperoxic conditions and the
reduction of HIF-1α helps to rescue some of the coronary defects [10]. As mentioned earlier,
NCC were initially believed to cause the formation of coronary ostia, but recent studies
proved these cells are more responsible for maturation of the coronary vasculature. Ablation
of these cells results in anomalies or conotruncial arteries. Perlecan, a proteoglycan found in
basallaminae, has been associated with anomalous RCA if mutated [11].

After birth, the coronary vasculature continues to grow in concert with the increasing cardiac
mass because of FGFs, VEGF, Integrin ὰVβ3, PECAM1 and VE-caderins proteins. Cellular
turnover and vessel modification continues even after complete maturation occurs. Multiple
sources are responsible for the continued angiogenesis, including the bone marrow [22].
Balance of homeostasis is maintained by endothelium derived paracrine factors. Vascular
smooth muscle cells, which rarely proliferate under normal physiological state, can be
abnormally upregulated to adopt a differentiated, proliferative state resulting in loss of
cytoskeletal markers. This loss of delicate balance leads to endothelial cell damage via
cytokine activation, upregulation of vasoconstrictor proteins and down regulation of
vasoactive proteins and progress to neointimal proliferation and ultimately to arterial stiffness
and lipid accumulation.

Fortunately, the heart heals itself by forming collateral circulation; thus, infarction is avoided
in majority of the cases. Numerous factors contribute to the development of collaterals
including nitric oxide, VEGF and Protein-1 synthesis. However, this process is limited.
Regenerative medicine for tissue repair of injured coronary arteries require thorough
knowledge of the factors responsible for the initial embryogenesis of the tissue, as well as
the proteins involved in the maturation and maintenance. ECs may potentially be a source of
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cells for development of genetically modified therapies in patients with coronary and
myocardial diseases.

4. CONCLUSION

Coronary artery anomalies have many variants with a spectrum of clinical outcomes;
fortunately the majority is benign. Considering the complex molecular mechanisms
necessary for coronary vasculogenesis, angiogenesis and arteriogenesis signaling, there are
many potential sources that can result in coronary anomalies and endothelial damage.
Understanding of normal coronary artery development and potential source of anomalies
may provide evidence at the structural, cellular, and molecular level for treatment of the
diseased heart.
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