198

VITEK 2 and PHOENIX fail to detect high-level gentamicin-resistant *Enterococcus faecium* isolates with aac-aph gene

Dear Editor,

Detection of high-level gentamicin resistance is important to evaluate the use of β -lactam and aminoglycoside combination for treatment. The most common mechanism of high-level resistance to gentamicin is due to the presence of bifunctional inactivation enzyme AAC-APH. Twenty-seven vancomycinresistant strains were tested for gentamicin susceptibility by using automated methods VITEK and PHOENIX systems as well as agar dilution MICs, E test, and disk diffusion using 120 µg disks. The presence of resistance genes was tested by PCR using specific primers. All isolates tested carried *vanA* and *aac-aph* genes. No inhibition zone was obtained with highly charged gentamicin disks as well as E test. Agar dilution MICs showed that 5, 3, and 19 strains had MIC 256, 512, and 1024 mg/L, respectively. Four of five isolates with gentamicin MICs 256 mg/L were susceptible by both VITEK and PHOENIX systems, and the remaining one was susceptible by PHOENIX and resistant by VITEK. Three isolates with MICs 520 mg/L were reported resistant by both systems. One isolate with MIC >1024 mg/L was reported susceptible by both automates which may be due to a growth problem. Gentamicin breakpoints for *Enterococcus faecium* of British, French, European, and American institutions have some differences [Table 1]. EUCAST accepts that there is no synergy between β -lactams and aminoglycosides

Table 1: Critical values accept	ed by Britis	h, America	n, French,	and Europ	ean organi	zations for	high-level	gentamicin
resistance in enterococci								
	MICs (mg/L)							
	≤ 8	16	32	64	128	256	512	≥1024
¹ Susceptible strains	*	*	*	*				
² BSAC breakpoint						*	*	*
² CLSI breakpoint							*	*
² CA-SFM breakpoint						*	*	*
EUCAST no synergie point						*	*	*
³ PHOENIX/VITEK 2 test								*

¹Distribution of gentamicin MICs among wild-type *E. faecium* shows the highest MIC as 64 µg/mL (EUCAST). ²Breakpoints accepted by BSAC, CLSI, and CA-SFM for gentamicin resistance are shown in gray. No synergy point is >128 mg/L for EUCAST. ³VITEK and PHOENIX use one well with 500 mg/L gentamicin to detect high-level resistance. Automated systems detect only strains with MICs \geq 1024 so they fail to detect *E. faecium* with MICs 256 and 512 mg/L on which use of β-lactams and gentamycin has no synergic effect.

Additional information. MIC values obtained by agar dilution, E test, disk diffusion methods, and automated systems
for 27 <i>E. faecium</i> isolates and presence of <i>vanA</i> and <i>aac-aph</i> genes

Organism	Genotype	Gentamicin susceptibilities				
		Agar dilution MICs	E test	Disk diffusion (120 µg)	PHOENIX	VITEK2
<i>E. faecium</i> SMH1	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH2	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH3	vanA, aac-aph	256	>256	6 mm	S	S
E. faecium SMH4	vanA, aac-aph	512	>256	6 mm	R	R

April-June 2011

Correspondence

199

	Additional information (contd)					
Organism	Genotype	Gentamicin susceptibilities				
		Agar dilution MICs	E test	Disk diffusion (120 µg)	PHOENIX	VITEK2
<i>E. faecium</i> SMH5	vanA, aac-aph	256	>256	6 mm	S	S
E. faecium SMH6	vanA, aac-aph	256	>256	6 mm	S	S
E. faecium SMH7	vanA, aac-aph	512	>256	6 mm	R	R
E. faecium SMH8	vanA, aac-aph	512	>256	6 mm	R	R
E. faecium SMH9	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH10	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH11	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH12	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH13	vanA, aac-aph	256	>256	6 mm	S	S
E. faecium SMH14	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH15	vanA, aac-aph	≥1024	>256	6 mm	S	S
E. faecium SMH16	vanA, aac-aph	256	>256	6 mm	S	R
E. faecium SMH17	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH18	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH19	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH20	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH21	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH22	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH23	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH24	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH25	vanA, aac-aph	≥1024	>256	6 mm	R	R
E. faecium SMH26	vanA, aac-aph	≥1024	>256	6 mm	R	R
<i>E. faecium</i> SMH27	vanA, aac-aph	≥1024	> <mark>2</mark> 56	6 mm	R	R

for strains with MICs >128 mg/L and this MIC level should be accepted as high level gentamicin resistance, which indicates acquisition of a resistance mechanism. BSAC also agrees with EUCAST recommendation. CA-SFM accepts \leq 256 mg/L as susceptible, while for CLSI <512 mg/L is susceptible.^[1-4] MIC testing for gentamicin is useful only to evaluate the presence of β -lactam-aminoglycoside synergy. *E. faecium* isolates with MIC >128 mg/L, this synergy is broken. Our study showed that some of the strains with *aacaph* gene reported as susceptible by VITEK and PHOENIX. We believe that the concentration used by automates to detect gentamicin-resistant enterococci should be re-evaluated.

References

- EUCAST Clinical breakpoints. Available from: http://www. eucast.org/clinical_breakpoints/ [Last Accessed on 2010 Dec 1].
- Recommandations du CASFM. Available from: http://www. sfm.asso.fr/nouv/general.php?pa=2 [Last Accessed on 2010 Dec 1].
- BSAC Methods for Antimicrobial Susceptibility Testing, Version 9.1. Available from: http://www.bsac.org.uk/Resources/ BSAC/Version_9.1_March_2010_final.pdf. [March 2010].
- 4. Clinical and Laboratory Standards Institute Performance

standards for antimicrobial susceptibility testing. 15th informational supplement. Approved standard MS100-S16. Wayne, PA: CLSI; 2006.

U Arslan, I Tuncer, D Fındık, *B Bozdogan

Department of Clinical Microbiology, Selcuk University Selcuklu Faculty of Medicine, Konya (UA,IT,DF), Adnan Menderes Universitesi Tip Fakültesi, Tibbi Mikrobiyoloji AD (BB), and Adu Biltem Epidemiyoloji Birimi (BB), Aydin, Turkey

*Corresponding author (email: <bbozdogan@adu.edu.tr>) Received: 19-01-2011 Accepted: 09-03-2011

Access this article online				
Quick Response Code:	Website:			
	www.ijmm.org			
	DOI:			
	10.4103/0255-0857.81785			
RESERVE ST				
回处学会就				