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Abstract

The constrained disorder principle (CDP) defines living organisms
as systems that comprise an intrinsic disorder bounded by dynamic
boundaries. Water plays a substantial role in multiple biological processes
affecting nucleic acids' and proteins' structure and function. The paper
describes the CDP-accounted water structure dynamicity and variability in
water isomers ratio. Per the CDP, the variability in the ratios between water
isomers is mandated for the inherent variability of biological systems. This
variability underlies water's unique functions and enables the flexibility
and adaptability required to cope with internal and external environmental
changes. The CDP-dependent water structures also determine energy
usage. The paper presents water molecules as ultimate biosensors for
stimuli in the environment and as the ultimate bioreactors that respond
to perturbations by changing the structure and function of the molecules
in their vicinity. Finally, it describes the potential of using water-based
signatures of variability to improve artificial intelligence-based algorithms
developed for correcting disturbances of biological systems by increasing
the degree of disorder in systems or tightening the disorder's boundaries.

Significance statement

The constrained disorder principle accounts for water structure dynamicity
and variability. Water isomers are mandated for the inherent variability of
biological systems. This variability underlies water's unique functions and
enables the flexibility and adaptability required to cope with internal and
external environmental changes.

Non-standard Abbreviations: CDP: constrained disorder principal

Introduction

Liquid water is central to life, but its roles in sustaining life are imperfectly
understood [1, 2]. The oversimplifying view is that water is a passive solvent
that functions as a vehicle for the diffusive motions of electrolytes, proteins,
and nucleic acids. Nonetheless, water plays an active role in multiple biological
processes [3]. Hydrophobic attraction forces determine macromolecular
conformations and associations to form different structures and play a role in
information-transfer processes in the cell and hydrodynamic processes [1, 4].
Water is a nucleophile and proton donor and acceptor, mediating electrostatic
interactions, and undergoes fluctuations and phase-transition changes as part
of its functions in the body [5].

The constrained disorder principle (CDP) defines systems based on their
intrinsic disorder confined within dynamic boundaries [6]. The CDP accounts
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for the disorder that characterizes the inherent variability of
the genome, cellular functions, and whole organs [7-11]. The
paper summarizes the role of water in biological systems and
describes CDP-based methods for using water to improve
diagnosis and therapy.

The Constrained disorder principle determines
the structure and function of living and non-living
organisms

The CDP defines living and non-living systems based
on their degree of variability bounded by arbitrary dynamic
boundaries [12]. Per this principle, living and non-living
systems differ by their degree of disorder. The non-living
system, similar to artificial machines, has a relatively low
degree of disorder bounded by narrow boundaries. In contrast,
living systems are characterized by a high degree of inherent
disorder, providing them the flexibility and adaptability
required to function under numerous internal and external
random perturbations [12].

The CDP provides a platform for correcting disturbances
of biological systems by increasing the degree of disorder in
systems that lost the disorder or by tightening the boundaries
of the disorder when it is out of control [12, 13]. Using the
CDP to correct the malfunction of biological systems and
improve organ function necessitates the determination of
signatures of variabilities that characterize biological systems
from the genome level to whole organs, such as variabilities
of heart rate, breathing, gait, and brain function [7-11, 14-26].
The use of signatures of variability in artificial intelligence
(AI)-based algorithms that quantify and implement them into
therapeutic regimens is being studied to improve the response
to therapies for chronic diseases [27-46].

The CDP accounts for the fluctuating hydrogen
bonds structure of water

The CDP accounts for the dynamic structure of water
molecules. Water in the cell is a versatile, adaptive component
that engages in a wide range of biomolecular interactions.
Part of the versatility of water depends on the water's
hydrogen-bonding capacity [3]. The interactions between
water, hydrogen bonds, and the molecules in their vicinity
impact the structures and functions of these molecules [3, 47].
Molecules do not merely exist in the water, as do the particles
of a simple liquid. They are held apart by hydrogen bonding,
which imposes geometric constraints on the molecular
positions [3, 48].

Water is a dynamic entity that forms fluctuating hydrogen
bonds with an average lifetime of around a picosecond [49].
10-25% of water molecules in cells have slower reorientation
dynamics [50]. The "slow water" hydrates macromolecules
and other cytoplasmic solutes. The H,O molecule forms a
tetrahedral shape that serves as a building block of ephemeral
five- and six-membered rings containing a space providing
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ice a lower density than the liquid [S1]. A balance between
water-solute and water-water interactions, including hydrogen
bonds, electrostatic and van der Waals forces, and the entropic
significances of the hydrogen bonding, is conditioned by
variables of the interfaces of the microenvironment [1, 52].
Water molecules show a relatively large range in bond angle
and lengths [53]. In addition, there is much variability in the
water contact angle, which may reflect an inherent structure
variability and parameters related to the external environment
and the measurement methods [54, 55].

The CDP determines the dynamicity of water-based
systems

The interactions between proteins and water involve
fluctuations over a wide range of timescales from milliseconds
to picoseconds, influencing several aspects of protein
function [56]. Per the CDP, this dynamicity is necessary for
the correct function of proteins under continuously changing
internal and external stimuli [6]. The dynamical behavior of
both the solvent and the macromolecules, including proteins,
underlie all reactions [1]. Per the CDP, dynamical degrees of
freedom in the hydration shell enable mandatory fluctuations
for proteins to undergo the conformational changes required
for their chemical function [57]. Enzymes' actions involve
conformational freedom requiring both structure and
dynamics [58]. A decline in enzymatic activity is associated
with weakening "soft" phonon modes [59]. Short-wavelength
fluctuations evolve from hydration layers, whereas large-
scale protein motions result from solvent fluctuations [1, 60].

This continuous dynamicity evolves from the fluctuations
in the interactions between the water and the molecules it
interacts with [61]. The interactions are subject to changes
in the microenvironment. The degree of disorder, which
characterizes the water-molecule shell, provides them with
the level of freedom, flexibility, and adaptability mandatory
for appropriate function [47, 62, 63]. This dynamicity follows
the CDP and is mandatory for the function of biological
systems.

CDP-based dynamicity determines the function of
water in biological systems

The CDP-accounted water structure dynamicity underlies
its unique functions. The distinctiveness of the H20 molecule
accounts for much of its properties. Water serves more than
simple solvents and playsarolein multiple biological processes
[3]. Water keeps macromolecular structure and is associated
with molecular recognition [64]. It is associated with protein
dynamics and provides a switchable communication channel
across membranes and inside and outside proteins [65]. Water
molecules can engage in directional, weak bonding enabling
reorientation and reconfiguration of three-dimensional
structures [3, 66].

The biological function of molecules depends on
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the interaction between the water and molecules in its
environmentl, 3. Water molecules mediate the folding of
proteins [3]. Numerous proteins possess dehydron units
concentrated at sites associated with other proteins and
assist in protein-protein interactions [3, 67]. Protein-protein
contacts mediated by water are linked to recognition and
docking and play a mechanistic role in protein function [3, 68].
Proteins can use bound water as functional units to interact
with other proteins and substrate molecules [3, 69]. The
hydration environment's sensitivity and the water molecules'
motions contribute to small changes in protein conformation,
impacting their behavior [70]. The structure and dynamics of
the hydration shell provide feedback to the proteins. Nucleic
acid structure necessitates water. The hydration structure of
DNA has a functional role in determining its conformation
[71]. The conformational state of double-stranded DNA
in solution is susceptible to hydration [3, 72]. The DNA
undergoes conformational transitions in polar solvents and
can lose its double helix [73]. The structure of water molecules
transmits sequence information to remote locations from the
DNA bases [74].

Water molecules create hydrogen bonding with surface
groups for hydrophilic interfaces, such as acidic residues
in proteins. For hydrophobic surfaces, observed in protein-
ligand binding, water forms structures that preserve the
hydrogen bonds and are dominant in molecular biology
[1, 75]. Water can fine-tune protein functionality, as in the
case of alkaline phosphatase enzymes and the chloride-
pumping of the retinal protein halorhodopsin of halophiles
[76, 77]. Much of the water in the cell is constrained. The
average distance between macromolecules in the cytoplasm
is 1 nm, corresponding to four molecular layers of water [78,
79]. A solute can alter the hydrogen bonding. Small polar
solutes like urea require minor solvent rearrangement. The
hydrophobic solutes are enclosed in a cavity surrounded
by water molecules that preserve their hydrogen bonding
[80]. Large proteins necessitate truncation of the hydrogen
bonds81. Water plays a distinctive role in electron transfer
between proteins and other biomolecules, which is critical for
biological processes such as photosynthesis and respiration
[3, 82]. Water is a channel for fast passive and active proton
transport supporting proton translocation through and into
proteins [83]. Hydration networks play a role in interacting
water molecules within the active site and allosteric
conformational shifts [84]. A specific order of bound water
exists in antifreeze proteins, which bind to the ice to control
crystallite nucleation [85].

The CDP-accounted water isomers determine their
properties and are a regulatory mechanism of the
inherent variability of biological systems

Per the CDP, molecules and organs mandate a degree
of disorder for their proper function [6]. The principle is
supported by the findings that the molecular degrees of
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freedom impact chemical reactivity [86]. Hydrogen atoms
in water molecules have a magnetic orientation and spin.
When the two hydrogens from water attach to either side of
an oxygen atom, they are in two configurations. Water exists
in para(p)-water and ortho(o)-water, distinguished by the
quantum number values of the total nuclear spin [86]. In the
case the two spins opposite ways up, the structure is termed
para-water, and when the structure of the spins is symmetrical,
it is termed ortho-water [86]. The ground state of para-water
is the final rotational ground state, and ortho-water is the first
excited rotational state [87]. The water in nature is a mixture
of both. Water molecules in isolation stay in their ortho or
para form. In water's liquid, room-temperature state, constant
molecular collisions between molecules quickly mix the
two forms. Nuclear-spin symmetry is usually conserved in
collisions, electromagnetic radiation, and chemical reactions
[86, 88]. Per the CDP, this continuously dynamic process of
changing the ratios between the two isomers under dynamic
conditions determines their properties and functions.

The para- and ortho-isomers of water differ in their
behavior. Reaction-rate constants strongly depend on
molecular conformation—the two ground states of para-
and ortho-water show different responses to an electric field
[89, 90]. Para-species reacts faster than the ortho-isomer
under specific conditions, attributed to the shorter rotational
averaging of the long-range ion-dipole interaction than
the ortho-species [87, 86]. A difference in reactivities is a
rotational effect induced by the nuclear-spin symmetry via the
generalized Pauli principle. It suggests an interplay between
nuclear spin and rotational symmetry and its ramifications
on chemical reactivity, implying exchange symmetry in
chemical processes [86, 91]. Various models, including the
confined rotor model, determine the isotope effects on water
dynamics, enabling the assessment of the mechanisms and
rates for ortho-to para-nuclear spin isomer interconversion in
water [92, 93].

The CDP implies that variabilities are essential for
proper function. The variability in the ratios between water
isomers is mandated for the inherent variability of biological
systems. Variability is inherent to the structure and function
of the genome at the DNA, RNA, and translation levels
[7]. It characterizes multiple cellular processes such as the
microtubules and enzymatic chemical reactions [14-17,
38, 94-98]. Stochasticity is also inherent to the function of
organs, such as heart rate variability, respiration, and gait [99-
101]. Accordingly, the ratio between the two water isomers
determines the function of the solvent, its interactions with
other molecules, and information transfer capabilities. Per
the CDP, this ratio is dynamic and enables the flexibility
and adaptability required to cope with internal and external
environmental changes. The ortho-to para-nuclear spin
isomer interconversion is a constrained disorder variability-
based regulatory method for biological processes.
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Most biological systems function under numerous
unpredictable stimuli. The random alterations in the ratios
between the two states of water, ortho, and para, under
continuously dynamic states, provide the required freedom
for the proper function of systems. The degree of freedom
manifested by the disorder's structure and function within
the dynamic boundaries of subcellular, cellular, and whole
organs enables them to adapt and function under continuously
changing settings. The variability in water structures, and
the different isomers, provides a unique platform for the
intrinsic variability in the structure and function of molecules
impacting the numerous chemical reactions and organs'
functions.

The CDP-dependent water structures determine the
energy usage

The association between structure, energy, and function
characterizes multiple biological systems [102, 103]. The
CDP determines the energy associated with biological
processes 104. Per the CDP, the water structure and
fluctuations are inherent for their proper function and energy
usage while kept within the dynamic boundaries and are a
mechanism that enables energy regulation. The changes in
the energy of binding and the contributions from enthalpy,
the sum of the system's internal energy and the product of its
pressure and volume, and entropy, the measure of a system's
thermal energy per unit temperature that is unavailable for
doing valuable work, are determined by the rearrangements
or displacements of water [105-107]. Entropy is essential
for hydrophobic interaction and is affected by the chemical
nature, size, and geometry of the interacting particles and the
water dynamics and fluctuations [108, 109]. Water molecules
have specific positions around a macromolecule beyond the
van der Waals forces [110, 111]. The hydration shell is an
active biomolecule and contributes to the intra-molecular
rearrangements and inter-molecular recognition processes
[1]. Water mediates the interactions between a protein and
a substrate to increase the selectivity and recognition of
substrates [112, 113].

Analysis of the energetic and electronic structure of
various water dimer isomers showed that the linear dimer has
the highest interaction energy, followed by the ring dimer and
the bifurcated dimer [114]. The electron density distribution
among the interacting water molecules is associated with the
different water isomers [114]. The hexamer is the smallest
water cluster with a three-dimensional hydrogen-bonding
network as its minimum energy structure [115]. Several
possible low-energy isomers determine the molecules'
stability and interaction with other molecules. Comparative
subsets of isomers at different expansion conditions determine
structures with minimum energy [115]. The sp3 hybridized
oxygen atom creates a tetrahedral coordination geometry,
with each H20 molecule coordinated with four others
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[116]. Since the molecules are mobile in the liquid, the four
hydrogen-bonding sites are not fully occupied [3, 117]. The
tetrahedral hydrogen-bonded geometry underlies the water's
density anomaly on freezing. The solid-state density is lower
than that of the liquid since, in crystalline ice, hydrogen
bonding constraints are inflexible [118]. When the lattice
melts, the three-dimensional hydrogen-bonded network is
distorted, enabling molecules to approach one another more
closely [3, 119].

The hydronium ion (H30+) is relevant to multiple
processes in the body. Analysis of the energy linked with
the isomers of H3O+(H20)n showed the relevance of
dividing individual fragments into subsets by the number
of H30+ and water molecules and the hydrogen-bonding
associations. Structures of different isomers correlate with
diverse body interactions by leading to various types of
hydrogen bonding [120]. It emphasizes the importance of a
numerous-body representation of inductive electrostatics and
charge transfer in modeling the hydration of an excess proton
in water [120]. The data support CDP-dependent dynamicity
in water structure as a biological regulatory mechanism of
energy usage.

The CDP-dependent water isomers are the ultimate
biosensors and bioreactors of biological systems

The CDP-dependent inherent variability in water structure
makes the isomers fundamental biosensors and bioreactors.
Water molecules can sense their environment as the ultimate
biosensor for the dynamicity of the stimuli encountered by
molecules, cells, and organs [121, 122]. Similarly, water
molecules can serve as the ultimate bioreactors, which by
changing their structures or ratio of isomers, impact the
structure and function of nucleic acids, proteins, biological
processes, and organ function [64, 123, 124]. The structure
and behavior of hydrogen ions in an aqueous solution are
determined by the ability of water to incorporate ions in
a dynamic network of hydrogen bonds [125]. Structural
variability characterizes the structure of water and complicates
the development of a reliable molecular-level description
of water under different settings [110]. Water's orientation-
dependent hydrogen bonding leads to open tetrahedral cage-
like structuring that underlies its volumetric and thermal
properties, enabling it to exert structure-dependent effects
on its environment. Tautomerism is a phenomenon where a
chemical compound exists in two or more interconvertible
structures that differ in one atomic nucleus's relative position,
usually hydrogenl [26]. It is a mechanism for determining
the function of molecules. Water plays a role in this process,
providing a means for determining the ratios between
different structures [127]. Alterations in the structure of
water molecules, or the ratios of their isomers, is a method for
changing water-dependent tautomerism [128]. Per the CDP,
this water variability is one of the mechanisms underlying
systems' variability from the genome to the whole organ [12].
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The CDP-based properties of water contribute to
drug design

The structural participation of hydration water in
biomolecular recognition assists in developing functional
molecules. Water networks are affected and impact ligand
binding [75, 106]. Solvent rearrangements can impact the
binding cavity. The design of ligands and drugs that considers
water-related relations may improve the ability to develop
better products. The M2 proton channel of the influenza A
virus targets drugs against the virus and is an example of a
water network gate proton conduction [83, 129]. Hydrating
the final protein-ligand complex is an example of water
serving as a target [130]. Optimizing water layers covering
hydrophobic thermolysin inhibitors augment the enthalpic
contribution to binding free energy [131]. It implies that the
CDP-associated flexibility provided to molecules by their
interactions with water is fundamental for drug design.

Using the variabilities in water isomers ratios for
correcting malfunction of biological systems

The CDP sets the basis for correcting malfunctioning
systems by implementing variability into systems where the
degree of variability is low or restricting disorder in systems
where the disorder boundaries are too broad [12]. The CDP
enables the design of water-based diagnosis and therapeutic
methods based on analysis of the alterations of variability
in molecule structures. The current limitations measuring
the ratios of water isomers under different conditions in the
human body preclude using water molecules as biosensors
for diagnosis and as bioreactors that respond to perturbations
and shape the response of their environments [132]. The
inability to quickly determine the effect of different stimuli
on water isomers makes it challenging to design controlled
water-targeted therapies [133]. Simple maneuvers affecting
disease states by changing the solutes in water are often
unsuccessful due to the oversimplification of pre-defined
fluids and the lack of understanding of their potential impact
on water structure [134].

However, it does not prevent water use as a therapeutic
target. Maneuvers that alter water structures, followed by
testing the clinical results of drugs and clinical outcomes,
may overcome technical constraints. Several methods are
used for altering the ratio of H O ortho-/para-spin-isomers
for different treatment procedures. The intensity of the
ortho-isomer line increased after distilled water treatment,
increasing proton density. The enrichment of the distilled
water by ortho-H,O molecules using cavitation bubbles
collapse was achieved when the water passed through
their supercritical state [135]. Magnetic water treatment
violates the synchronism of para-isomers vibrations, with
the subsequent destruction of ice-like structures due to the
receiving of energy from collisions with the ortho-isomers
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[136]. Magnetic water treatment increases the number of
more physically and chemically active ortho-isomers altering
the nature and speed of the processes in aqueous solutions
[136]. Maneuvers of peptides that share an identical primary
structure but differ in their aqueous solubility, which is
related to the alteration of protein-water interplay, affect the
inhibitors of aggregation associated with amyloid diseases
[137]. Using the CDP-based concepts of implementing
variability to improve performance and response to molecular
interventions [27-45] set the basis for dynamic alterations of
water molecules to improve response to therapies. Second-
generation Al systems regulate the degree of variability in
the design of variability-based therapeutic interventions [13,
18-20]. These systems allow using water fluctuations and
dynamicity and water isomers ratio as a quantifiable measure
to be implemented into diagnostic and therapeutic schemes.
Improving methods for measuring water isomers can make
them powerful diagnostic and therapeutic targets. Using
water as the ultimate biosensor and bioreactor provides a
platform to improve our ability to intervene in diseased
states. Implementing water-based quantitative variability
measurements into therapeutic regimens can enable upscaling
variability-based Al algorithms to improve the diagnosis and
treatment of chronic diseases and aging.

Conclusion

In summary, water is a unique molecule that can be
affected by and affect its environment. The ability of the
water molecule to harbor different structures, along with
its multiple potential functions, makes water the ideal
biosensor and bioreactor. Improving the current techniques is
expected to enable the use of water as a robust diagnostic and
therapeutic platform.
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