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Abstract
Novel coronavirus disease of 2019 (COVID-19) is a highly contagious 
disease that has been recorded as a third global pandemic caused by the 
coronavirus (CoV) family in the past twenty years in the aftermath of severe 
acute respiratory syndrome (SARS) and middle east respiratory syndrome 
(MERS). COVID 19 is caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) that is transmitted by person-to-person 
transmission and it remains asymptomatic or presented with mild flu-like 
symptoms in most occasions, while in some instances, it may progress 
to severe life threatening and potentially fatal illnesses. This disease is 
now imposing immense negative influences across the world due to the 
highly contagious nature of the disease as well as due to the absence of 
effective treatment targeting the disease. This review addresses the recent 
advances on the structure and genomic arrangement of SARS-CoV-2 as 
well as the viral entry, replication and virus-host protein interactome that 
potentially contribute to cell infectivity, immune evasion, and viral spread. 
Unveiling the details of such aspects of SARS-CoV-2, therefore, possibly 
has paramount importance for discovering therapeutic targets.
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Introduction
Coronaviruses (CoV) are the largest family of RNA viruses that belong 

to the order Nidovirales, family Coronaviridae and subfamily Coronavirinae. 
These group of viruses involve four genera, namely alpha-, beta-, gamma-, 
and delta CoV that may cause illness ranging from common cold to potentially 
fatal severe illnesses [1]. In the past two decades, the world has faced three 
pandemic respiratory diseases caused by CoV family. The two regional 
epidemics results from CoV were severe acute respiratory syndrome (SARS) 
and Middle East respiratory syndrome (MERS) in 2001 to 2003 and 2012 to 
2015, respectively. These are serious and potentially fatal illnesses caused by 
pathogenic beta CoVs known as SARS-CoV and MERS-CoV, respectively 
[2]. Since December 2019 the third pandemic from novel CoV, now officially 
named novel coronavirus infectious disease of 2019 (COVID-19), has been 
identified in Wuhan, China. COVID 19 was identified to be caused by a novel 
CoV known as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). SARS-CoV-2 is an enveloped and crown shaped viruses with a 
positive-sense single-stranded RNA genome grouped under the genus beta 
CoV, subgenus Sarbecovirus, and species SARS-related CoV along with 
SARS-CoV and MERS-CoV [1,3,4].  Despite many attempts to contain its 
spread, COVID-19 continues to become a significant public health concern 
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and inflict enormous burdens of morbidity and mortality 
while seriously challenging the globe to unprecedented strain 
on health system, economies and social life [5,6].  Hence, 
this review will provide insights on the structure, genomics 
and life cycle, virus-host protein interactome of SARS CoV-
2, which is important to find out more effective vaccine and 
drug.  

The Structure of SARS-CoV-2
SARS-CoV-2 is a spherical, non-segmented enveloped 

virus with diameter ranging between 50–200  nm [7]. It 
resembles the conventional CoV structure with five structural 
proteins, several non-structural proteins (nsp), and accessory 
proteins [8].  Structurally, the SARS-CoV-2 has a double-
layered lipid envelope, including four viral surface proteins, 
namely spike (S), envelope (E), membrane (M), and 
hemagglutinin-esterase (HE) proteins that are embedded into 
the lipid bilayer, and the nucleocapsid (N) protein situated 
within the envelope and associated with a single stranded 
positive sense viral RNA genome (Figure 1a) [4,9-11].  Due 
to the lipid nature of the viral envelope, enveloped CoVs 
including SARS-CoV-2 are typically susceptible to destruction 
following exposure to heat, detergents, and organic solvents 
[12].  Thus, SARS-CoV-2 can only live for a limited period 
outside the host environments and usually need to be moved 
directly from one to another host to continue survival [11]. 

Spike (S) Protein
S protein is a large homo-trimeric transmembrane 

glycoprotein of 1273 amino acids long and 126-168kDa 
molecular weight, comprising a very large N-terminus 
ectodomain, a transmembrane (TM) domain, and a small 
C-terminus endodomain [10].  It is synthesized as single-chain 
precursors that oligomerize in the endoplasmic reticulum
(ER) and undergoes post translational modification such as
glycosylation and folding into S1 and S2 domains in Golgi
to eventually form long, club-shaped spikes emanating from
the outer surface of virions that provide the name CoV [13].

S protein plays a key role in the early steps of SARS-
CoV-2 infection in host cell receptor recognition, viral 
attachment, and membrane fusion [14].  S protein exhibits 
as an inactive precursor in native state but it undergoes 
substantial conformational rearrangement when it interacts 
with the host cell. The host cell proteases activate S protein by 
trimming it into two distinct subunits: S1 subunit that serve 
for viral attachment, and S2 subunits that allow membrane 
fusion (Figure 1b) [15]. 

S1 Subunit
The S1subunit is 685 amino acids long segment of S 

protein involving a 13 amino acid long signal sequence (SS) 
at the N terminus to direct the transport of the S protein to 
its membrane destination, an N-terminal domain (NTD) 

involved in sugar binding, receptor-binding domain (RBD), 
and C terminal domains (CTD) (Figure 1c) [15].  RBD is 
223 amino acids long and 21kDa weight structure situated 
near the C-terminus of S1 to mediate the docking of SARS-
CoV-2 with the host cell surface receptors. It possesses three 
domains where one lying upward while two lying downward 
in most beta-CoVs including SARS-CoV-2. It contains a core 
structure and a receptor-binding motif (RBM) that make direct 
contact with the host cell receptor, such as the angiotensin-
converting enzyme 2 (ACE2) [16,17].  The RBD undergoes 
conformational changes that transiently mask or unmask the 
receptor binding determinants, known as the “down” and the 
“up” conformation respectively, where “down” corresponds 
the inaccessible or buried (closed) state of the receptor and 
“up” corresponds to the accessible (open) and less stable state 
of the receptor. The RBD of SARS-CoV-2 shares 73%–76% 
sequence homology with that of SARS-CoV. However, unlike 
the down conformation of SARS-CoV RBD which packed 
tightly against the NTD of the nearby protomer, the down 
conformation of SARS-CoV-2 RBD angled closer to the 
central core of the trimer [17]. RBD is a highly immunogenic 
component producing effective neutralizing antibodies and 
hence it is a promising therapeutic target for anti-viral drug 
and vaccine development. Nonetheless, the highly variable 
sequence and hidden location of RBD may challenge to 
develop effective RBD based drugs and vaccines [15-17]. 

S2 Subunit
The S2 subunit of S protein is 588 amino acids containing 

type I integral membrane protein, which composed of a large 
N-terminal ectodomain involving a fusion peptide (FP) and
two highly conserved heptad-repeats (HR), a single TM
domain anchored to the viral membrane, and a C-terminal
cytoplasmic tail (CT) [18].  FP is a 15–20 amino acids long
fusogenic peptide anchored to the target cell membrane
when the S protein assumes the pre-hairpin conformation. It
plays an essential role in inducing viral and cell membrane
fusion in late infection and facilitate SARS-CoV-2 entry by
disrupting and connecting the membrane lipid bilayers of the
target cell [15,19].  HR is a highly conserved alpha helical
coiled coil structure that composes repeated heptapeptides
(HPPHCPC) richly containing hydrophobic (H)-, polar (P)-,
and charged (C)-amino acid residues [20]. Crystallographic
studies indicated that HR involves three HR1 (912th-984th

residues)and three HR2 (1163rd-1213rd residues) to form
a stable six-helical bundle structure involved in close
apposition of the viral and cellular membranes and thus, in
facilitating membrane fusion and subsequent SARS-CoV-2
entry [21,22].  The HR1, which is located adjacent to the
N terminus of S2 and hence also known as HRN, forms the
central trimeric core in parallel manner. Whereas HR2, which
is situated closer to the C-terminus immediately preceding
the TM domain and thus also known as HRC, is packed into
three antiparallel hydrophobic grooves on the surface of the
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identity with MERS-CoV and SARS-CoV, respectively 
[27].  It is a polytopic protein comprising three domains: an 
ectodomain, a TM domain, and an endodomain [28].  The 
ectodomain is a small domain in N-terminus of M protein, 
whereas the endo-domain is a large domain in the C-terminus 
of M protein and located in the interior of the virion or on 
the cytoplasmic part of intracellular membranes that has 
the ability to bind with RNA. Besides, M protein of SARS-
CoV-2 has a triple helix bundle or a single 3-TM domain that 
resembles the sugar transporter semi-SWEET, suggesting 
that this protein may play a role in the viral entry into the host 
cell and viral RNA maturation though further confirmatory 
studies are required [29]. M protein is synthesized in rough 
ER and largely modified by N-linked glycosylation at α and 
σ with a limited extent by O-linked glycosylation at β to form 
this glycoprotein [26, 30]. 

Envelope (E) Protein
E protein is a small hydrophobic membrane protein 

containing 76 to 109 amino acids and weighting 8 to 
12kDa [10].  This protein is a minor component of CoV 
having a common architecture of a short negatively charged 
(hydrophilic) N-terminal ectodomain, a large uncharged 
(hydrophobic) TM region, and a large negatively charged 
(hydrophilic) C-terminal tail. E protein has PDZ-binding 

central trimeric core [22].  Based on prior data from other 
enveloped viruses, antibodies against the HR domains are 
broadly neutralizing and targeting HR could be a promising 
target for repurposing fusion inhibitors against SARS-CoV-2 
infection [14]. 

Hemagglutinin-Esterase (HE)
Additionally, there is a dimeric structural protein located 

on the surface of beta CoVs such as SARS-CoV-2 called 
hemagglutinin-esterase (HE). The HE of SARS-CoV-2 acts 
as a typical glycan-binding lectin and receptor-degrading 
enzyme having acetyl-esterase activity [23].  HE contains 
O-acetylated sialic acids that bind with the lectin-like S
protein of SARS-CoV-2 for the initial attachment of SARS
CoV-2 to get into the host cells. These activities are suggested
to facilitate S protein-mediated cell entry and mucosal virus
spread albeit not needed for viral replication [4,23-25].

Membrane (M) Protein
M protein is a type III transmembrane structural 

glycoprotein possessing nearly 230 amino acids and has 25–
35kDa molecular weight. It is the most abundant viral surface 
protein responsible for viral assembly and determining the 
characteristic shape of virion [26]. The M protein of SARS-
CoV-2 has been reported to have 39.2% and 90.1% structural 

Figure 1: Schematic representation of SARS-CoV-2 (a) Structural proteins. The spike (S) protein, envelope (E) protein, membrane (M) protein, and hemagglutinin 
esterase (HE) are found embedded in the lipid bilayer, whereas the nucleocapsid (N) protein is associated with the viral RNA. (b) A three-dimensional structure 
of S protein. S protein consists of S1 and S2 subunits with three small size RBD in S1 subunit where one lying up and two lying down. (c) A one-dimensional 
structure of S protein. S protein has 1273 amino acids with two cleavage sites: S1/S2 and S2’ sites (shown with arrows). The S1subunit contains a signal sequence 
(SS), N-terminal domain (NTD), receptor-binding domain (RBD) possessing a core structure and receptor-binding motif (RBM, and C terminal domains (CTD). 
Whereas the S2 subunit composed of a large ectodomain involving fusion peptide (FP) and heptad repeats (HR1 and HR2), a single pass transmembrane domain 
(TM) and a small cytoplasmic tail (CT). 
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motif in the C-terminal region that plays a critical role in 
viral pathogenicity by disturbing cell signaling. The PDZ-
binding motif is considered as a pathologic factor of SARS-
CoV [31,32].  Similarly, available evidence indicated that E 
protein is reported to play an important role in COVID 19 
pathogenesis as it interacts with the tight junction related 
protein, protein associated with Lin Seven 1(PALS1) [33].  
This protein was also observed to have ion channel activity, 
viroporin activity and assembling into homo-oligomers, 
ranging from dimers through a pentameric to hexameric 
α-helical structure [30,34,35].  Thus, E protein has key roles in 
viral assembly and release, host cell membrane permeability 
and virus-host cell interaction, but it is not required for viral 
replication [4,36].  Taken together, the ion channel activity 
and the pathogenic role of PDZ-binding motif of E protein 
make SARS-CoV and SARS-CoV-2 more pathogenic than 
other CoVs by triggering cytokine storm, inflammasome, 
subsequent pulmonary edema, and ultimately acute 
respiratory distress syndrome and death [33].  Due to these 
crucial roles of E protein, impairing this mechanism using 
E protein blockers was reported as appropriate therapeutic 
target for SARS-CoV-2 treatment as per the report of animal 
model studies [37]. 

Nucleocapsid (N) Protein
N protein is 43–50kDa weight and 419 amino acids long 

viral protein enclosing viral nucleocapsid within the viral 
protein shell (capsid) or inside the infected cells [38].  It has 
an independently folded N-terminal domain which serve 
as a RNA-binding site via its lysine and arginine amino 
acids, and a C-terminal (dimerization) domain [10,11]. This 
protein coats the single strand positive sense viral RNA 
that allows the virus to hijack human cells and turn them 
into factories of viruses. N protein therefore plays critical 
roles in RNA synthesis (replication and transcription), 
transcription regulation, cell signaling pathway as well as in 
encapsidated viral RNA genome packaging into a long helical 
nucleocapsid structure or matrix of the ribonucleoprotein to 
form new virions [4,39,40].  N protein is a phosphoprotein 
that is found phosphorylated at many serine and arginine-
rich positions in SARS-CoV-2 and other CoVs but the role 
of phosphorylation is still elusive [41-43]. Different studies 
indicated that N protein is a highly immunogenic viral protein 
that can induce immune response and could be considered 
as a possible vaccine candidate for SARS-CoV-2 [27,44]. 
In contrast, other studies reported that, due to the biological 
function of N protein and its hidden location from antibodies, 
either by viral or cell membranes, antibodies against N 
protein are less likely to directly neutralize SARS-CoV-2 
[45,46].  Therefore, antibodies produced against N protein 
may not provide protective immunity, and it could not be 
effective vaccine candidate. However, N protein could serve 
as a potent diagnostic and therapeutic target for COVID 19 
[38].  This is supported by an in silico study that proposed 

N protein as a possible therapeutic target against COVID 19 
after further thorough investigation [47]. 

The Genomic Arrangement of SARS-CoV-2
The SARS-CoV-2 is a single stranded positive sense RNA 

virus of nearly 30 kilobases (kb) size. The genome of SARS-
CoV-2 shares 79-82% similarity with that of SARS-CoV and 
MERS-CoV, which generally have five nucleotide variations 
[48].  The genome of SARS-CoV-2 contains a 5′ cap head 
structure at one end and a 3′ poly(A) tail at another end with 
38% of the genome has Guanine-Cytosine (GC) content [49]. 
Every SARS-CoV-2 virus possess 14 open reading frames 
(ORFs) encoding 7096 amino acid residues long polyprotein 
in 27 distinct proteins essential for viral replication, 
nucleocapsid and spike formation [4,30,48]. The longest 
ORF, called ORF1, contains replicase gene particularly in 
the upstream region of the ORF1a/b that make up two-thirds 
(nearly 20kb) of the genome while the remaining third (about 
10kb) of the viral genome taken by 13 ORFs composed of the 
structural and accessory genes (Figure 2) [50]. The 5′ terminus 
of the genome contains a leader sequence and untranslated 
region (UTR) that contains ORF1 expressing many nsps 
required for viral replication, transcription and possibly 
immune evasion [51].  In particular, the ORF1a gene encodes 
for polyprotein pp1a comprising 10 nsps while the ORF1b 
gene, next to ORF1a, encodes polyprotein pp1ab possessing 
up to 16 nsps [48].  The pp1a and pp1ab polyproteins 
undergo autoproteolytic cleavage to form the viral replicase-
transcriptase complex (RTC) encoding proteins having 
several unique or unusual enzymatic activities [50].  Besides, 
there are transcriptional regulatory sequences (TRS) at 5’ 
end at the beginning of each structural or accessory genes 
necessary for the expression of each of these genes [48,49].  
The 3′end of SARS-CoV-2 genome on the other side contains 
four structural genes and eight accessory genes as well as 
other unidentified genes required for viral RNA synthesis 
[30].  Structural genes are responsible for expressing four 
viral structural proteins: S, E, M, and N proteins [51].  The 
accessory genes are distributed within the structural genes 
and encode nine putative accessory proteins, 3a, 3b, 6, 7a, 7b, 
8, 9b, 9c, and 10 [48].  Interestingly, SARS-CoV-2 uniquely 
possesses ORF3b and ORF10 encoding genes that are not 
found in SARS-CoV. Accessory proteins generally have no 
known function and are almost non-essential for replication 
except some that have been indicated from a recent genetic 
analysis to play important roles in viral pathogenesis [50,52].  
The recently identified new variants of SARS-CoV-2 are 
reported to result from the gene mutations typically occurring 
in five genes, namely, S, N, ORF8, ORF3a, and ORF1ab 
[53].  Collectively, the genome of SARS-CoV-2 is typically 
organized in the order of 5′-leader-UTR-replicase-S–E–M–
N–3′UTR–poly (A) tail with accessory genes interspersed 
within the structural genes at the 3′ end of the genome [30]. 
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The Life Cycle of SARS-CoV-2
Generally, CoV entry into host cells is a significant 

determinant of viral infectivity and pathogenesis [54].  
SARS-CoV-2 is mainly transmitted through person-to-person 
transmission, primarily by spraying droplets from the nose, 
eyes or mouth of infected individuals. This is followed by 
the entrance of viral particles during breathing into the lungs 
through the respiratory tract [6].  SARS-CoV-2 is generally 
suggested to use a different-step mechanism to infect host cells, 
especially lung alveolar cells. The virus first binds to the cell 
surface receptor for viral attachment, then membrane fusion 
occurs to directly release viral RNA into the cytoplasm or the 
virus reaches endosomes via receptor mediated endocytosis 
to fuse viral and lysosomal membranes and release the viral 
genome. This is then followed by translation, RNA synthesis 
and packaging, viral assembly, and virion release [4,54].  In 
this review, the life cycle of SARS-CoV-2 is discussed under 
the following headings: viral attachment, viral entry, viral 
uncoating and RNA release, translation of replicase proteins, 
replication and transcription, RNA packaging and viral 
assembly, and finally, exocytosis and virion release. 

Viral Attachment
It is the virus–host cell interactions that determine the 

cellular entry and spread of SARS-CoV-2 across the tissues, 
suggesting its crucial role for viral invasion and viral tissue 
tropism. To infect human, the attachment between the virus 
and the host cell is initiated by the interaction between the S 
proteins of SARS-CoV-2 and its surface receptor on human 

cells in a lock and key fashion [6,10].  The process of viral 
attachment to and invasion of human cells occur using 
different cellular receptors. The S1 subunit of the S protein 
of SARS-CoV-2 recognizes host surface receptor (ACE2) 
to enable the virus to enter and infect the cell. Like SARS-
CoV, the ACE2 receptor on alveolar epithelial cells of the 
lower respiratory tract has been reported to be a key cell-
surface receptor to harbor SARS-CoV-2 [55-57].  Besides, 
recent PCR analyses have revealed that ACE2 receptors are 
also expressed in vascular endothelial cells, renal tubular 
epithelium, and gastrointestinal tract, and to a lesser extent, 
in the heart, adipose, and reproductive tissues to bind with 
viruses [58-62].  In particular, the host ACE2 receptor bind 
to the RBD of S1 subunit in SARS-CoV-2 with affinity 
(dissociation constant, Kd=15nM) 10–20 fold higher than to 
that of SARS-CoV (Kd=325.8 nM) [63].  This is due to the 
super binding affinity of glutamine (Gln) 493 and asparagine 
(Asn) 501 residues in RBM with ACE2 [63,64].  This possibly 
explain the more sensitivity of the S protein of SARS-CoV-2 
to ACE2 than the S protein of SARS-CoV, and hence the 
higher capacity of SARS-CoV-2 for human cell infection. 
In addition to ACE2, the CD147 (also known as Basigin or 
EMMPRIN) has been identified as an alternative cell-surface 
receptor for human cell mediating SARS-CoV-2 invasion 
and spread to cause COVID 19 [65].  Furthermore, more 
recent publications have demonstrated a novel host factor 
for SARS-CoV-2 called neuropilin 1(NRP1). NRP1 is a host 
factor that abundantly expressed in the respiratory, olfactory 
epithelial cells and endothelial cells. This host factor serves 

Figure 2: Schematic illustration of the genomic arrangement of SRAS-CoV-2. The single-stranded RNA genome of SARS-CoV-2 (30kb) consisting of two large 
genes, the ORF1a and ORF1b genes, which encode pp1a and pp1ab comprising 10 and16 nsps respectively. The nsps assemble into RTC which is a multienzyme 
complex involving PLpro (nsp3); 3CLpro (nsp5); RdRP (nsp12); helicase and 5′-TPase (nsp13); ExoN(nsp14); N7-MT (nsp14); EndoN (nsp15); 2’-O-MT (nsp16). 
The structural genes encode four common structural proteins (S, E, M, and N proteins). The ORFs also contains genes the so-called accessory genes encoding 
accessory proteins (3a, 3b, 6, 7a, 7b,8, 9b, 9c, and 10). 
Abbreviations: 3CLpro- 3 Chymotrypsin Like Protease; E- Envelope Protein; EndoN- Endoribonuclease; ExoN- Exoribonuclease; M- Membrane Protein; N- 
Nucleocapsid Protein; nsps- Non-Structural Proteins; N7-MT- N7-Methyl Transferase; ORF- Open Reading Frame; pp- Polyprotein, 2’-O-MT, 2’-O-methyl 
transferases; PLpro- Papain-Like Protease; -1PRF- -1 Programmed Ribosomal Frameshifting Nucleocapsid Proteins; RdRP- RNA Dependent RNA Polymerase; 
RTC- Replicase-Transcriptase Complex; S- Spike Protein; 5’-TPase- 5′-Triphosphatase.
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membrane-TMPRSS2 or early pathway, involves the 
trimming of S protein at S1/S2 and S2’ cleavage sites 
on the cell surface by host proteases such as TMPRSS2, 
trypsin, and human airway trypsin-like protease (HAT) at 
neutral pH [14,72].  In SARS-CoV, the S1/S2 cleavage site 
of the S protein is located at R667, whereas the S2’ site is 
situated at R797. These sites are highly conserved in all 
CoVs, suggesting its functionally relevance to cell surface or 
early SARS-CoV-2 entry mechanism using TMPRSS2 [14].  
Unlike SARS-CoV, SARS-CoV-2 possess additional unique 
cleavage site that potentially preactivated (or pre-primed) 
by proprotein convertase (PPC) enzyme family (furin) at 
the S1/S2 boundary to facilitate viral entry, particularly in 
TMPRSS2-mediated cell surface entry pathway [54].  This 
specific furin cleavage site, also referred to as PPC motif 
(or polybasic site), incorporates four distinct amino acids 
(RRAR) located at the interface between the S1 RBD and 
the S2 FP within the S protein[69,73]. Thus, furin cuts the 
full-length S protein at S1/S2 polybasic cleavage site into S1 
and S2 functional subunits that possibly provide additional 
host cell surface receptor binding sites, indicating the highly 
contagious nature of SARS-CoV-2 compared to SAR-CoV 

as a co factor for viral entry into cells, especially in those cells 
with low level of ACE2 receptors. Thus, NRP1 may serve as 
an alternative or independent gateway for SARS-CoV-2 entry 
and invasion of the human cells [66,67]. 

Viral Entry
Following receptor binding, the SARS-CoV-2 entry 

requires S protein priming and activation through proteolytic 
cleavage at S1/S2 and S2’ sites respectively to facilitate viral 
entry into a host cell and to activate viral and target cell 
membrane fusion [68-70].  Proteolysis at S1/S2 site can occur 
by host protease enzymes, including extracellular proteases 
such as TM protease serine 2 (TMPRSS2) and lysosomal 
cysteine proteases such as cathepsin L (CTSL) that have 
essential roles in priming S protein of SARS-CoV-2 for entry 
[23,51].   Based on the cleavage sites of S protein and the 
use of TMPRSS2 for entry, accumulated evidence indicated 
that the SARS-CoV-2 entry mechanism can be cell surface or 
endosomal entry pathway (Figure 3) [18,19,71].  

Cell Surface Entry Pathway

The cell surface entry pathway, also termed as the 

Figure 3: The schematic diagram of the life cycles of SARS-CoV-2.  S protein of SARS-CoV-2 binds to ACE2 (or NRP1 and CD147) (1) and the virus enter 
to host cell either via cell surface entry pathway involving priming of S protein by TMPRSS2 (or other serine proteases) followed by viral and host membrane 
fusion (2a) or through endosomal entry pathway involving receptor mediated endocytosis into endosomes, which then fuse with lysosome to form endolysosome 
where S protein cleaved by lysosomal enzyme such as CTSL (2b). Then viral uncoating and RNA release into the host cell cytoplasm occur (3) and translation 
of RTC directly from RNA genome followed (4). Genomic RNA undergoes replication to produce replicated viral genome (5); transcription (6) and translation 
to synthesize structural proteins (S, M, E, and N protein) required to form new virions (7). Viral RNA packaging of the replicated genomic RNA with N protein 
(8) and viral assembly with structural proteins (9) occur. Finally, after furin-mediated processing of S protein, exocytosis to release new viruses out of the host
cell environment takes place. ACE2- Angiotensin Converting Enzyme 2; CTSL- Cathepsin L; 3CLpro- 3 Chymotrypsin Like Protease; ERGIC- Endoplasmic
Reticulum–Golgi Intermediate Compartment; NRP1- Neuropilin 1; PLpro- Papain-Like Protease; RTC- Replicase-Transcriptase Complex; +ssRNA- Positive 
Sense Single Stand RNA.
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[74-76]. Furin mediated cleavage at the S1/S2 priming site is 
followed by the activation of SARS-CoV 2 via TMPRSS-2 
[77].  Furthermore, the presence of multiple furin cleavage 
sites within S protein of SARS-CoV-2 increases the likelihood 
S protein cleavage by furin-like proteases and thereby 
enhances its infectivity and pathogenicity [78,79]. This is 
confirmed by another study demonstrating that SARSCoV-2 
virus with a natural deletion of the S1/S2 furin cleavage site 
is associated to attenuated pathogenicity in hamster models 
[80].  Overall, a receptor binding, specifically with protease-
cleaved S1 protein potentiates SARS-CoV-2 entry and host 
cell infectivity [54,81]. Furin-mediated cleavage at S1/S2 
junction of the S protein facilitates S1 binding to host ACE2 
receptor, while this pre-priming exposes the C-end rule 
peptide on S1 of SARS-CoV-2 and enables binding to the 
b1 subdomain of NRP1 [66].  After the first cleavage of S 
protein in concert with the binding of S1 to target cell surface 
receptor, the prefusion trimer destabilized and resulting in 
shedding of the S1 subunit and insertion of the N terminus of 
the newly released S2 subunit into the cell membrane [19,82]. 
This promotes further proteolytic cleavage of the S2 subunit 
at the S2’ site into FP and S2’ domains by host extracellular 
proteases such as TMPRSS2 and HAT, allowing membrane 
fusion via the combined actions of FP and HR domains 
[54,81].  In native S protein, the FP and HR segments of the 
S2 remain stably sequestered but following S2’ site cleavage, 
they undergo a series of conformational changes [83]. This 
conformational change exposes the FP and allow its insertion 
into the target cell membrane, and hence triggers membrane 
fusion by providing attachment points for drawing the viral 
and cellular membranes together [14].  This reduces the 
distance between the viral and host cell membrane, and now 
the HR1 domain of the S2 protein becomes in close apposition 
to the target cell membrane, while the HR2 domain is in 
close proximity to the side of viral membrane. Then, HR2 
folds back to HR1 to form a stable hexameric bundle in an 
antiparallel manner in the fusion core, allow the pulling of 
the viral membrane toward cellular membrane and tightly 
binds to it, thereby enhance the fusion of two membranes and 
subsequent viral entry [22,84].  

Endosomal Entry Pathway
The cell surface or early entry mechanism is generally 

preferably used by a certain TMPRSS2 expressing cells 
during SARS-CoV-2 entry and infection [14].  In absence 
of TMPRSS2 or other exogenous proteases, the endosomal 
pathway has been observed to serve as an alternative SARS-
CoV-2 entry mechanism in which the internalization of the 
virus occurs either through clathrin-dependent or clathrin-
independent receptor mediated endocytosis of viral particles 
enclosed within the vesicle [10].  This pathway is also called 
the endosome-cathepsin or late pathway of viral entry since the 
cleavage of S protein occurs in late phase of infection within 
the endosome where the S protein is processed (activated) 

by CTSL at a low pH, triggering the fusion between the viral 
and host endosomal membrane [85-88].  The CTSL is one of 
the eleven human cathepsins that cleaves S protein at T678 
which is localized at 11 amino acids downstream of the S1/S2 
cleavage site and 120 amino acids upstream of S2’site [14].  
Prior studies proposed the possibility of another protease to 
cleave at S2’ site in the low pH of endosomes to fully activate  
he fusogenic potential of the S protein [82].  Generally, the 
predominantly utilized SARS-CoV-2 entry mechanisms may 
vary with the types of host cells. The recent studies using 
immortalized kidney epithelial cell lines such as Vero E6 
(from African green monkey) and 293T (from embryonic 
human) demonstrated that these cells do not express the 
cell surface protease TMPRSS2 and hence SARS-CoV-2 
infection is dependent on the endosomal entry pathway and 
cathepsin inhibitors were effectively blocked the viral entry 
[64,75,76,89].  In contrast, TMPRSS2 expressing cells, such 
as the lung and intestinal epithelial cells are vulnerable to viral 
entry preferably via the cell surface or early entry pathway 
and hence TMPRSS2 inhibitors become more effective while 
impairs the efficacy of cathepsin inhibitors according to the 
different studies [64,75,76,89].  A recent study has suggested 
that SARS-CoV-2 entry inhibition may require blockade of 
both the cell surface and endocytic pathways [90].  However, 
further extensive studies are required to clearly explain the 
role of the two entry pathways of SARS-CoV-2 and whether 
individual inhibition of the cell surface or endocytic pathways 
will provide effective therapeutic benefit against COVID-19.

Viral Uncoating and RNA Release
In cell surface or TMPRSS2-mediated entry mechanism, 

the viral nucleocapsid directly released into the host cell 
cytoplasm, while in endosomal pathway, the endo-lysosomal 
compartment opens to release the SARS-CoV-2 virus into 
the cytoplasm via the action of lysosomal enzymes. This is 
followed by uncoating of viral nucleocapsid through the host 
cell proteasomal degradation of N protein to release a single 
stranded viral RNA genome into the cytoplasm [4,10,85]. 

Translation of Replicase Proteins
Once the viral genetic material is fully released into the 

cytoplasm, the direct translation of the replicase gene from 
the positive sense viral genomic RNA using the host cell 
machinery called ribosome to generate replicase proteins 
important for viral replication [4,30].  The replicase gene from 
ORF1a/b encodes two large ORFs, named rep1a and rep1b 
that are involved in expressing two co-terminal polyproteins 
(pp) called pp1a and pp1ab. During the translation of pp1ab 
there is a molecular mechanism that controls the expression 
of protein in SARS-CoV-2 called -1 programmed ribosomal 
frameshifting (-1PRF). Available evidence indicated that 
the -1PRF of SARS-CoV-2 differ from -1PRF of SARS-
CoV only with a single nucleotide and this subtle difference 
does not have impact on the rate of translation [50].  The 
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replicase pp1a and pp1ab in SARS-CoV-2 are subsequently 
autoproteolytically cleaved into the 10 and 16 individual nsps 
by papain-like protease (PLpro) encoded within nsp3 and by 
the main protease called chymotrypsin like protease (3CLpro) 
encoded within nsp5 [4].  The former enzyme is responsible 
for cleaving the nsp1/2, nsp2/3, and nsp3/4 boundaries, 
while the latter is involved in the cleavage of the rest eleven 
boundaries [10].  Then the nsps assemble into the RTC that 
involves multiple enzymes, including nsp7-nsp8 primase 
complex, RNA dependent RNA polymerase (RdRP) within 
nsp12, RNA helicase and 5′-triphosphatase (5’-TPase) within 
nsp13, RNA cap-modifying methyltransferases, such as N7-
methyl transferase (N7-MT) within nsp14 and 2-O-methyl 
transferase (2-O-MT) within nsp16, an exoribonuclease 
(ExoN) within nsp14, and an endonuclease (EndoN) within 
nsp15 (Figure 2) [4,10].  These enzymes are important 
to mediate RNA replication and transcription using sub-
genomic RNA as a template. Furthermore, the RTC creates a 
conducive environment for RNA synthesis by mediating the 
rearrangement of the rough ER-derived membranes to form 
double-membrane vesicles (DMV) in the cytoplasm of the 
infected cell, where viral replication and transcription take 
place [4,91].  

Replication and Transcription
Besides as a template for translation of the replicase 

polyproteins, the positive sense viral RNA used as a template 
for replication. The RTC uses the existing positive sense 
viral genomic RNA as a template to generate full-length 
anti-sense RNAs which subsequently serve as templates for 
synthesizing various copies full-length positive sense RNA 
genomes called genomic RNA. The novel replicated positive 
sense genomic RNA is now used as a viral genome to be 
encapsulated with N protein during the packaging of the new 
virion [50].  However, the RTC does not always replicate 
the entire viral genome, sometimes it stops early and creates 
a shorter RNA strand, known as sub genomic RNA. Thus, 
discontinuous or fragmented transcription called nested sub 
genomic RNA transcription produces 3′ nested sub-genomic 
mRNAs from the canonical TRS and only the ORF closest 
to the 5′ end of sub genomic RNAs undergo translation 
though it has several ORFs [92,93].  The SARS-CoV-2 
expresses nine sub genomic RNAs (S, 3a, E, M, 6, 7a, 7b, 8, 
and N) which serve as precursors (or as mRNAs) to produce 
structural proteins (S, E, M, and N proteins) and accessory 
proteins through translation using host ribosome attached to 
the ER membrane [30,50].  The viral genomic RNA synthesis 
involving replication and transcription is catalyzed by nsp12 
RdRP with the help of nsp7 and nsp8 as cofactors [94].  The 
nsp14 exoribonuclease provide the RTC 3’-5’ proofreading 
feature [95]. 

RNA Packaging and Viral Assembly
In this step, the viral RNA genome is packaged and 

combined with the viral protein to form a new virus. The 
S, E, and M structural proteins are first inserted into the 
ER and then transported via the secretory pathway into the 
endoplasmic reticulum–Golgi intermediate compartment 
(ERGIC) [4,30]. The M protein directs most protein–protein 
interactions required for viral assembly. When M protein is 
expressed along with E protein, viral progeny are formed 
after incorporating nucleocapsids, suggesting these two 
proteins function together to produce envelopes [48].  The 
nucleocapsids are formed from replicated and packaged viral 
genomes encapsulated by N protein within the cytoplasm, 
and as a result they fuse within the ERGIC membrane in 
order to enhances viral envelopment and hence creating 
mature virions enclosed within the Golgi vesicle by budding 
in the ERGIC [10]. In the meantime, the S proteins, although 
not required for assembly, able to traffic to the ERGIC and 
interact with the M protein incorporated into virions at this 
step. M protein interactions provide the impetus for envelope 
maturation [10,49]. Regardless of the viral entry mechanisms, 
furin mediated processing of S protein at the S1/S2 cleavage 
site is thought to occur following SARS-CoV-2 replication 
and viral assembly in ERGIC prior to the release of new 
viruses into the extracellular environment [15]. 

Exocytosis and Virion Release
Following the combination of viral proteins and genome 

into the mature virions, the novel virions are eventually 
exported from infected cells by fusing smooth walled vesicles 
enclosing virion with host cell membrane to release the virus 
outside the cell through exocytosis. Now the new virus is 
ready to infect another nearby cell or person [10,50]. 

SARS-CoV-2–Host Protein Interactions 
(interactome)

Besides the interaction between S protein of SARS-
CoV-2 and host cell surface receptors (ACE2, CD147, and 
NRP1), recent studies using interactome maps revealed the 
intricate molecular interactions between the several viral 
proteins of SARS-CoV-2 with human proteome, known 
as virus-host interactome [96-98].  A study by Gordon 
et al identified 332 interactions between SARS-CoV-2 
proteins and human proteins. These interacting proteins are 
predominantly found in the lung tissues compared to other 
tissues, supporting the idea that SARS-CoV-2 preferentially 
hijacks proteins that are expressed in lung tissue [96]. The 
interactions between SARS-CoV-2 proteins and human 
proteins have been recently demonstrated in many biological 
processes [96-99].  Interactome map studies indicated 
that viral nsp5, nsp8, nsp13, and E protein are associated 
with the epigenetic and gene-expression regulators such as 
histone deacetylase 2 (HDAC2) [96,98]. In particular, nsp5 
has been identified to have high confidence interaction 
with HDAC2 and may inhibit the transport of HDAC2 into 
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nucleus and could possibly hinder the ability of HDAC2 
mediated inflammatory and interferon response of the host 
cell [100,101].  Besides, the vesicle trafficking of the host 
was found to be associated with the interacting proteins of 
SARS-CoV-2, accounted for nearly 40% of viral proteins. 
The study by Gordon and his coworkers were identified the 
host interactions with viral nsp2 (Wiskott–Aldrich syndrome 
protein and scar homology (WASH)), nsp6 (vacuolar ATPase 
and Sigma receptors), nsp7(Rab proteins), nsp8 (signal 
recognition particle (SRP)), nsp10 (AP2), nsp13(organization 
of the centrosome and Golgi), ORF3a (homotypic fusion 
and protein sorting (HOPS), E protein (AP3), M protein 
(morphology of the ER and vacuolar ATPase)), and ORF8 
(protein quality control in the ER), ORF9c (Sigma receptors). 
The viral protein interaction with Sigma receptors have been 
implicated in lipid modification and the ER stress response 
[96].  In addition, 3CTpro (nsp5) of SARS-CoV-2 was reported 
to affect the trafficking into the ER and mitochondria [102].  
SARS-CoV-2 interacts with the host ubiquitin ligases 
required for ubiquitination of proteins. Viruses usually hijack 
ubiquitination pathways of the host cell for replication and 
pathogenesis44. The ORF10 of SARS-CoV-2 interacts with 
ubiquitin ligases, particularly to members of a cullin-2 E3 
ligase complex, to hijack ubiquitination and to degrade 
restriction factors [96,103]. Furthermore, SARS-CoV-2 
interacts with host translation machinery via N protein which 
binds to the stress granule proteins and host mRNA-binding 
proteins such as the mTOR-regulated translational repressor, 
casein kinase 2 (CK2), and mRNA decay factors [96].  N 
protein also interacts with RNA processing and regulation 
of the host cell [104-106].  SARS-CoV-2 interacts with the 
host cytoskeleton via nsp1 and nsp13 and reorganizes it for 
efficient cell entry and controls host transcriptional processes 
to support viral protein translation [98].  The SARS-CoV-2 
also interacts directly with innate immune signaling proteins 
using various viral proteins and hence dysregulates innate 
cellular defenses. The interactions between the viral nsp13, 
nsp15 and ORF9b with the interferon pathway while nsp13 
and ORF9c interact with the NF-κβ pathway have recently 
been reported an interactome map study [96].  Other studies 
also reported that the two E3 ubiquitin ligases that regulate 
antiviral innate immune signaling targeted by viral ORF3a 
and nsp9 [107,108].  This is also supported with Messina et 
al. who demonstrated the viral-host interactome, particularly 
the S protein interactions with the components of the host 
innate immunity, such as toll Like receptors (TLR), cytokines, 
and chemokines, as well as with lipid metabolism [99].  In 
addition, the host interacts with nsp1 in DNA replication, 
nsp8 in ribonucleoprotein complex biogenesis and RNA 
processing and regulation, nsp7, nsp8, nsp13, N protein, 
and ORF9b in cell signaling, nsp7, nsp9, nsp15, and ORF6 
in nuclear transport machinery, nsp4, nsp8, and ORF9c 
in mitochondria, and nsp9 the extracellular matrix [96].  
Overall, deciphering the functional interaction between the 

host and SARS-CoV-2, can be used to shed light on the host–
virus interaction in the dynamic process of SARS-CoV-2 
infection and pathogenesis. This may pave the way to better 
understand how the host cellular signaling pathways hijacked 
during this viral infection to replicate and evade innate 
immunity. Besides, virus-host interactions may also provide 
key information to guide new antiviral therapeutic and 
prophylactic drug repurposing [96,97]. Therapies targeting 
the host-virus interface, where the occurrence of mutational 
resistance is less likely, could potentially give promising 
long lasting, broad-spectrum therapeutic modalities [109].  
A recent interactome map noted 69 existing drugs known to 
target host proteins or associated pathways that interact with 
SARS- CoV-2 [96].  

Concluding Remarks
Conclusively, COVID 19 is a newly emerged global 

pandemic caused by novel CoV called SARS-CoV-2. SARS 
COV-2 is an enveloped, crown shaped beta CoV with a 
positive-sense single-stranded RNA genome possessing an 
overall amount of nearly 30kbs. The structure of the SARS-
CoV-2 genome is organized into 14 ORFs that encodes four 
structural proteins, eight accessory proteins and several nsps. 
The structural proteins involve S, M, E, and N proteins. The S 
protein, composed of S1 and S2 subunits, is important for viral 
entry to the host cells. The viral entry involves binding of S1 
protein (via its RBD) with the host cell surface receptors, such 
as ACE2 receptors, CD147, and NRP1 for viral attachment, 
subsequently it fuses with host cell membrane or internalizes 
to endosomes, and fuse viral and lysosomal membranes with 
the help of S2 protein (via FP and HR) to release its viral 
genome into the cytoplasm. Eventually, the viral replication, 
packaging, and release occur and the novel virus becomes 
ready to infect another cell or person. M protein has a crucial 
role in viral assembly while E protein has a profound role in 
viral release in addition to its involvement in viral assembly. 
On the other hand, N protein plays a key role in viral genome 
replication, transcription and packaging. Furthermore, SARS-
CoV-2 proteins have been recently revealed to interact with 
several host proteins that play important roles in usurping 
cellular machinery, which may be helpful to target cellular 
signaling pathways and likely contribute to development of 
safe and effective anti-COVID-19 therapies or vaccines.
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