
Introduction

	 Cerebral stroke (brain attack) is the most life- 
threatening cerebovascular disorder, the second leading 
cause of death and principle cause of disability in the 
world1. Even with advances in treatment of stroke, 
20-50 per cent of the patient die within a month or 
become dependent on others2. Stroke results due to 
interruption of cerebral blood flow causing irreversible 
and fatal damage to the affected neurons. There are two 
main types of strokes, ischaemic and haemorrhagic. 
Ischaemic stroke accounts nearly for 85 per cent of 
all reported stroke incidents and is the main focus of 
the current studies. This type of stroke occurs when 
a thrombus or embolus blocks cerebral blood flow 
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Ischaemic stroke is a disorder involving multiple mechanisms of injury progression including activation 
of glutamate receptors, release of proinflammatory cytokines, nitric oxide (NO), free oxygen radicals and 
proteases. Presently, recombinant tissue plasminogen activator (rtPA) is the only drug approved for the 
management of acute ischaemic stroke. This drug, however, is associated with limitations like narrow 
therapeutic window and increased risk of intracranial haemorrhage. A large number of therapeutic 
agents have been tested including N-methly-D-aspartate (NMDA) receptor antagonist, calcium channel 
blockers and antioxidants for management of stroke, but none has provided significant neuroprotection in 
clinical trials. Therefore, searching for other potentially effective drugs for ischaemic stroke management 
becomes important. Immunosuppressive agents with their wide array of mechanisms have potential 
as neuroprotectants. Corticosteroids, immunophilin ligands, mycophenolate mofetil and minocycline 
have shown protective effect on neurons by their direct actions or attenuating toxic effects of mediators 
of inflammation. This review focuses on the current status of corticosteroids, cyclosporine A, FK506, 
rapamycin, mycophenolate mofetil and minocycline in the experimental models of cerebral ischaemia. 
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resulting in cerebral ischaemia and consequently 
neuronal damage and cell death. Haemorrhagic stroke 
occurs due to rupture of any blood vessel in the brain 
resulting in rapid cerebral damage and accounts for the 
remaining 15 per cent stroke cases.

	 Intravenous recombinant tissue plasminogen 
activator (rtPA) is the only approved therapy for 
management of ischaemic stroke3. Patients who receive 
this drug within the initial 3 h therapeutic window 
also have a high risk of intracranial haemorrhage, 
usually 6-8 per cent against 0.6-2 per cent spontaneous 
hemorrhages in stroke4-5. Other limitations associated 
with rtPA therapy like disruption of blood brain barrier; 
seizures and progression of neuronal damage6-8 are 
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major concerns. Thus, there is a continued need for 
exploring novel neuroprotective strategies for the 
management of ischaemic stroke. 

	 Recent studies on immunosuppressive agents have 
revealed their neuroprotective potential in ischaemic 
stroke. Immunosuppressive agents have shown 
promise as being neuroprotective in safeguarding 
the neurons against excitotoxic insults and also 
improving neurological functions and infarct volume 
in experimental models of ischaemic stroke9-13. These 
agents have direct effect on microglia cells and inhibit 
mediators of inflammation. In order to appreciate 
the potential role of immunosuppressive agents in 
ischaemia, revisiting the pathophysiology of cerebral 
ischaemia is required. This review briefly focuses on 
the mechanisms involved in cerebral ischaemic stroke 
and how the immunosuppressive agents have shown 
potential in its management.

The aetiopathology and mechanisms of cell death 
in ischaemia

	 The interruption in blood flow to the brain 
results in reduced supply of oxygen and nutrients to 
the neurons. The lack of blood supply results in two 
identifiable areas namely the core and penumbra. The 
core which is a neuronal dead area is not accessible 
to therapeutic intervention whereas the penumbra is 
a still salvageable zone and is the target of the most 
therapeutic interventions (Fig.). The consequence of 
ischaemia can briefly be described as below.

Energy depletion: Consequent to reduction/loss of 
blood supply inside the core, the adenosine triphosphate 
(ATP) levels are reduced leading to incarceration of 
cellular metabolism14. The lack of energy results in 
impaired ion homeostasis. 

Calcium overload and activation of glutamate 
receptors: Disrupted ion homeostasis leads to rapid 
depolarization, and large influx of calcium and 
potassium. The intracellular calcium overload results 
in activation of excitotoxic glutamatergic transmission, 
nitric oxide (NO) synthase, caspase, xanthine oxidase 
and release of reactive oxygen species15 (Fig.). 

	 Excess glutamate release leads to activation 
of phospholipases, phospholipid hydrolysis and 
arachidonic acid release, ultimately resulting in necrotic 
as well as apoptotic cell death16-18. Generation of free 
radicals, lipid peroxidation, inflammatory cascade 
and activation of immediate early genes such as c-fos, 
c-jun, leads to progressive ischaemic damage. 

	 The generation of reactive oxygen species in the 
core area is less as compared to penumbra because there 
is negligible blood supply to core. The penumbra is 
still the viable tissue surrounding the core, and receives 
trivial amount of blood from collateral arteries19. This 
area is therefore, the target for drug intervention and has 
potential for recovery. If no quick and effective drug 
intervention is done, this further progresses to cellular 
energy failure, release of excitotoxic neurotransmitters 
and reactive oxygen species and finally, cellular death 
in the region.

Mechanism of cell death

Neurodegeneration 

	 Neurodegeneration is described by the loss 
of neuronal functions and cell death20. Neuronal 
degeneration and cell death occurs through apoptotic as 
well as necrotic pathways21. Cell death is characterized 
by imbalance in cellular homeostasis, influx of calcium, 
mitochondrial dysfunction and generation of reactive 
free radicals22,23. 

	 (i) Necrotic cell death - Energy depletion leads 
to release of excitatory amino acids (EAAs) such as 

Fig. A simplistic presentation of the cascade of events occurring in 
cerebral ischaemia and possible sites of immunosuppressive agents 
actions.

16	 INDIAN J MED RES, JANUARY 2011



glutamate24. Excessive release of glutamate activates 
α-amino-3-hydroxy-5-methlyl-4-isoxazolone-proprionic 
acid (AMPA) receptors which increase sodium influx25 
and the N-methly-D-aspartate (NMDA) receptors 
which mediate the influx of calcium26. This increase 
in calcium overload results in activation of proteases 
such as caspases and matrix metalloproteases 
(MMP). The aftermath of this activation is increased 
proteolytic injury and ultimately cell death27. Many 
calcium dependent and calcium induced enzymes 
mediate intracellular calcium induced toxicity like 
NO synthase, cyclooxygenase, phospholipase A 2 and 
calpain128. Increased intracellular calcium activates 
NO synthase and results in release of NO29. The NO 
then combines with superoxide generated as by- 
product from cyclooxygenase, or xanthine oxidase to 
produce highly reactive peroxynitrite, that results in 
tissue destruction30. Cells are not capable of protecting 
themselves against excessive reactive oxygen species 
and ultimately die.

	 (ii) Apoptotic cell death - In apoptotic cell death 
there is transcription of immediate early genes such 
as c-fos, c-jun leading to caspase cascade resulting in 
increased cytokine levels within hours of initial injury. 
The released cytokines cause activation of cell surface 
receptors such as Fas receptor and tumour necrosis 
factor-alpha receptor (TNF- α) leading to apoptotic 
cell death31,32. TNF- α stimulates the production of 
bcl-2 family protein, bid33. Bid activates bax, another 
bcl-2 family member and increases mitochondrial 
permeability, resulting in release of cytochrome c, a key 
component in apoptosis initiation. Cytochrome c forms 
a complex with apoptotic protease activating factor-1 
(APAF -1) and procaspase -9, this complex causes 
cleavage of procaspase – 9 to caspase 9 and ultimately 
activation of other caspases including casapase-334. 
Caspase-3 injury leads to irreversible DNA damage 
and cell death35. Generation of reactive oxygen species 
during cerebral ischaemia also activates process of 
apoptosis36 leading to activation of transcription factor 
p53 and caspases thus resulting in DNA damage37.

Inflammation and ischaemia - role of microglia 
cells 

	 The continued ischaemic injury to brain cells results 
in to a complex inflammatory cascade. It is characterized 
by infiltration of leukocytes mainly polymorphonuclear 
(PMN) cells, monocytes/macrophages lymphocytes 
and the activation of microglia which are the resident 
immune cells of the brain38. Astrocytes, neuronal support 
cells, also contribute to inflammation during insult39. 

Astrocytes under normal conditions perform several 
functions like, glutamate uptake, glutamate release 
and maintain cellular and ion homeostasis40. During 
cerebral injury, astrocytes undergo morphological 
changes and become activated41. Activated astrocytes 
release proinflammtory cytokines and chemokines thus 
results in initiation and progression of inflammation39.

	 In cerebral ischaemia, microglia, resident brain 
macrophages become activated and release detrimental 
neurotoxic mediators like proinflammtory cytokines, 
superoxide, nitric oxide (NO), TNF- α and proteases42-

44. Many of these mediators can inturn influence the 
microglia morphology and activate it in a paracrine 
and autocrine fashion45. Among the proinflammatory 
cytokines interleukin- 1 (IL-1) is most abundantly 
expressed in microglia cells46. IL-1 induces the 
expression of other cytokines such as IL-6 and TNF-
α47 which contribute to the progression of ischaemic 
damage. The inhibition of this pathway of neuronal 
damage can be considered a logical option.

	  Other agents that have an important role in stroke 
injury are proteases. Tissue plasminogen activator, 
a potential neurotoxicant released by microglia cells 
is implicated in cerebral ischaemic injury48. Other 
proteases that play a leading role in disruption of 
blood brain barrier are matrix metalloproteases which 
contribute to secondary brain damage in cerebral 
ischaemia49. NO is a small molecule, secreted by 
microglia cells, acts directly on neurons as neurotoxin 
or indirectly by potentiating excitotoxic transmitters50. 
Inhibition of microglia activation in ischaemia may 
provide a novel target in management of stroke, the 
immunosuppressive agents, therefore, may serve the 
purpose to a greater extent. 

Is rtPA good enough in acute stroke?

	 Currently, recombinant tissue plasminogen 
activator (rtPA) is the only drug approved by US Food 
and Drug Administration for management of acute 
ischaemic stroke51. Several limitations are associated 
with rtPA including the narrow 3 h therapeutic window, 
increased risk of intracranial haemorrhage, generation 
of free oxygen radicals and recurrent stroke5,51. The 
rtPA has only clot busting activity and this activity 
is bothersome because it can lead to progression of 
secondary neuronal damage52. 

	 For developing potent neuroprotective agents two 
main strategies are focused, clot lysis activity and 
safeguard of neurons subjected to ischaemic damage. 
rtPA is adequate for clot lysis, but there have been 
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many unsuccessful attempts in developing effective 
neuroprotective drugs for management of stroke. 

Drugs under investigation for ischaemic stroke 

	 Several studies conducted on drugs of different 
groups have exhibited neuroprotection in experimental 
models of cerebral ischaemia. One of these agents is 
endothelin antagonist (TAK-044), a reported anti-
inflammmatory and antioxidant agent53. In oxygen-
glucose deprivation model of cerebral ischaemia, TAK-
044 showed significant improvement in percentage cell 
viability as compared to cells in hypoxic condition54. 
In rat model of focal cerebral ischaemia, TAK-044 
significantly improved the neurological parameters, 
oxidative stress markers and infarct volume53. Several 
other agents have also shown potential of protecting the 
ischaemic cerebral injury by antioxidant mechanism. 
Agents like α–tocopherol55, trans–resveratrol56 and 
melatonin57 have shown significant improvement in 
neurobehavioural paradigms, infarct size and oxidative 
stress markers in experimental model of cerebral 
ischaemia. 

	 The other group of drugs that showed promise is 
statins, 3-hydroxy-3-methyglutaryl (3- HMG)- CoA 
reductase inhibitors. Several studies have reported the 
beneficial effects of statins in experimental model of 
cerebral ischaemia58-60. The neuroprotective effects 
of statins are reported to be mediated by inhibiting 
inducible NO synthase thus resulting in inhibition 
of proinflammtory cytokines60. Beside these agents, 
recent studies have also shown neuroprotection by 
human umbilical cord cells61, 62 in experimental models 
of cerebral ischaemia.

	  Recent findings have focused on drugs which 
can be given as stand alone or in combination with 
rtPA for management of stroke. One of these agents 
is imatinib, an anticancer drug. Imatinib is tyrosine 
kinase inhibitor used in treatment of chronic myeloid 
leukaemia. The rtPA neurotoxicity is thought to be 
mediated through platelet derived growth factor–CC 
(PDGF-CC)63. Recently Su et al63 have shown that 
administration of imatinib, PDGF-CC antagonist, one 
hour after vessel occlusion and 5 h later application 
of rtPA drastically reduced the infarct volume by 34 
per cent and incidence of intracranial haemorrhage 
by 50 per cent as compared to rtPA alone in mouse 
model of stroke. One single administration of 
imatinib before the rtPA administration may provide 
an adequate neuroprotection in stroke patients, but 
this aspect needs to be validated in clinical settings. 

Till these agents are tested in clinical trials, no 
concrete conclusions can be drawn from animal 
models.

Neuroprotection by immunosuppressive agents: a 
new dimension 

	 As the ischaemic stroke has a multifactorial 
aetiopathology, and the mechanisms that are involved 
are activation of glutamate receptors, release of 
proinflammatory cytokines, TNF-α, NO, reactive 
oxygen radicals and proteases, the drugs having 
combinational neuroprotective and anti-inflammatory 
activity will be theoretically more effective in its 
management. Immunosuppressive agents have shown 
potential as neuroprotectants and anti-inflammatory 
agents in experimental models of cerebral ischaemia 
(Fig.). Drugs including steroids, immunophilin ligands 
and mycophenolate mofetil (MMF) have been in use 
as immunosuppressants since 1970s and these have 
been effectively used in avoiding organ rejection in 
transplant patients. Recent studies have reported their 
protective effect in microglial and neuronal cell cultures 
and in animal models of cerebral ischaemia64. Steroids, 
cyclosporine A, FK506, MMF and minocycline have 
been reported to have direct inhibitory effects on 
activation of microglia cells. This effect is mediated 
by inhibition of secretion of proinflammtory cytokines 
and NO from microglia cells64 (Table). 

Steroids in cerebral ischaemia: an unresolved issue 

	 For many years corticosteroids have been used 
for the treatment of brain oedema65. Overwhelming 
evidence has reported the protective effects of 
corticosteroids, both in vitro as well as in a variety of 
animal models66,67. 

	 In vitro studies using steroids have shown inhibition 
of both microglial cell proliferation and activity of 
NO synthase68 in the isolated microglial cells. Several 
investigators have reported that treatment of isolated 
microglial cells with steroid reduce the release of the 
proinflammatory substances69-71 and thus restricting the 
inflammation cascade and protecting neurons against 
the ischaemic insult. Treatment with dexamethasone on 
gerbil hippocampal regions diminished the ischaemia 
induced glutamate toxicity and consequently protected 
the neurons10. Dexamethasone has also been shown to 
suppress monocyte chemoattractant protein-1 (MCP-1) 
production via inhibition of jun-N-terminal kinase 
and p38 mitogen activated protein kinase in activated 
microglial cells8.
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	 In in vivo studies, application of dexamethasone 
in permanent middle cerebral artery occlusion model 
in rats reduced the expression of TNF-α and decreased 
the inflammatory cascade72. Dexamethasone treatment 
in a model of permanent occlusion of middle cerebral 
artery in cats showed neuroprotective effects73. In an 
interesting experiment by de Courten – Myers et al74. 4 h 
occlusion of middle cerebral arteries in hyperglycaemic 
cats, and administration of high dose of corticosteroids 
30 min after occlusion, significantly reduced the size of 
infarcts as compared to untreated group. 

	 The mechanism of neuroprotection by 
corticosteroids is speculated to be either due to 
activation of membrane receptors on neurons by 
circulating steroids and hence leading to rapid changes 
in properties of exposed neuron or their modulation of 
nuclear transcription of various genes67. The beneficial 
effects of corticosteroids are largely due to preservation 
of neuronal structures and improvement in behavioural 
functions. 

	 Interestingly in contrast to the experimental 
evidences, in the clinical trials, the steroids have not 
shown any beneficial effects. In a retrospective study on 
patients with history of ischaemic stroke, disability and 
mortality rates were worse in patients taking steroids 
as compared to those without steroid treatment75. 
There was no difference between the outcomes i.e., 
the disability and mortality as well as adverse effects 
between the two groups. In another study, patients 
with acute cerebral infarction were treated either with 
dexamethasone or placebo and the patients in steroid 
group fared worse than the placebo group76.

	 In summary, corticosteroids have shown favourable 
neuroprotective profile in experimental models of 
ischaemic stroke but failed to provide any significant 
beneficial effect in ischaemic patients. Thus, the use of 
corticosteroids as neuroprotective agents still remains 
controversial and there is a need to re-evaluate these in 
well planned clinical trials.

How effective are immunophilin ligands in stroke?

	 A plethora of evidence is available that indicates 
the role of immunophilin/calcineurin in brain function 
and development77-79. High levels of immunophilins 
are expressed in brain and these are believed to 
be involved in neuronal apoptosis mechanisms80. 
Cyclosporin, tacrolimus/FK506 and rapamycin are 
immunophilin binding ligands used in avoiding 
rejection of transplanted organs.

Cyclosporine A: Cyclosporine A is an 11 amino 
acid cyclic peptide of fungal origin having effective 
immunosuppressive action. The mechanism of action 
of cyclosporine A involves binding to cyclophilin, 
an intracellular protein belonging to immunophillin 
family. Cyclosporine A and cyclophillin complex 
inhibits calcium/calmodulin dependent activation of 
calcineurin and via this pathway cyclosporine inhibits 
production of IL-281 and gamma interferon and other 
lymphokines82. Cyclosporine A can also reduce the 
expression of an intracellular adhesion molecule and 
affect subsequent inflammation cascade83. 	

	 Cyclosporine A has shown antiapoptotic activity 
by inhibiting activation of caspase in rat neuronal 
cells9. It showed protective effect against apoptosis 
in human neuroblastoma cells by enhancing neurite 
outgrowth84. Cyclosporine A has shown to reduce 
brain oedema, infarct size and improved the survival of 
hippocampal CA1 neurons probably due to enhanced 
phosphorylation of cAMP response element binding 
(CREB) protein and increase in production of brain 
derived neurotrophic factor in experimental model of 

transient forebrain ischaemia in rats85-87. In the global 
ischaemia rat model, cyclosporine A showed beneficial 
effects by inhibiting the activation of microglia cells 
and thus providing protection against microglia secreted 
proinflammatory substances88. Till now cyclosporine A 
has not been tested in clinical trials for the treatment 
of CNS disorders but it has been tried in autoimmune 
disorders. 

	 Cyclosporine A treatment in rats with experimental 
autoimmune myasthenia gravis has shown protective 
effects by reducing the levels of acetylcholine receptor 
antibodies by 50 per cent89. Mahattanakul et al90 
have reported antinflammatory effect of cyclosporine 
A in patients suffering from chronic inflammatory 
demyelinating polyneuropathy. In this study, 
cyclosporine A treatment was successful in 3 out of 8 
patients and the therapy with this agent did not show 
any serious side effects. In summary, cyclosporine A 
does have potential in neuroprotective strategy and 
needs to be evaluated experimentally and in clinical 
trials.

Tacrolimus/FK506: FK506 is an immunosuppressant 
introduced in 1990s and the mechanism of action is 
similar to that of cyclosporine A. FK506 binds with 
FK506 binding protein (FKBP), an immunophilin, 
and makes a complex which results in inhibition 
of downstream activation of nuclear factor of 
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activated T-cells (NFAT), hence controlling relevant 
immunological genes91. 

	 In in vitro studies, FK506 has shown protection 
against excitotoxic neuronal death in cortical cell 
cultures92. In another in vitro study, FK506 protected 
the cultured cortical neurons against oxygen glucose 
deprivation. The action was inhibited in the presence 
of an antibody against FKBP-12 suggesting that FK506 
acts via FKBP-1293. 

	 FK506 has been shown to provide protection in 
rodent model of focal ischaemia and this neuroprotection 
was thought to be mediated by immunophillins11, but 
in subsequent study done in gerbils in transient global 
ischaemia model, FK506 reduced delayed neuronal 
death and this effect was not mediated by inhibition of 
neuronal NO synthase, again binding to physiological 
target was anticipated94. 

	 In primate model of cerebral ischaemia, FK506 
showed a significant improvement in neurological 
deficits95. FK506 has been shown to have neuroprotective 
effects on cultured neurons and also in experimental 
models of ischaemic stroke, still a mechanistic pathway 
for its neuroprotective effect of tacrolimus needs to be 
explored.

	 Rapamycin: Rapamycin is a macrolide 
antibiotic developed as an antifungal agent but was 
later discovered to have potent immunosuppressive 
and anti-proliferative properties. Rapamycin is an 
immunophillin ligand that structurally resembles 
FK506. Unlike FK506 and cyclosporine A, rapamycin 
binds to mammalian targets of rapamycin (mTOR) and 
prevents phosphorylation of p70S6K, 4EBP1 and other 
proteins involved in transcription, translation and cell 
cycle control96. Rapamycin also antagonizes the anti-
apoptotic signals mediated by mTOR97, and induces 
autophagy and maintains normal cell metabolism98. 

	 Literature is available stating the benefitting effects 
of rapamycin in in vitro and in vivo models of cerebral 
ischaemia. An in vitro study reported that application 
of rapamycin at different concentrations did not affect 
the bioelectrical activity and evoked field excitatory 
post-synaptic potentials magnitude in hippocampal 
slices99 suggesting an alternative to calcineurin 
inhibitors in events of neurotoxicity. Rapamycin 
treatment inhibits the hypoxia induced expression of 
inducible NO synthase in microglial cells100. In mice 
after experimental traumatic brain injury, rapamycin 
significantly improved the functional recovery101. 
Anti-depressant like effects of rapamycin in rodents 

have also been reported suggesting a role in treatment 
of affective disorders102. Effects of rapamycin in 
experimental models of cerebral ischaemia have not 
been systematically investigated. More studies have to 
be undertaken to fully acknowledge the neuroprotective 
significance of rapamycin.

Does mycophenolate mofetil (MMF) have any 
potential as neuroprotectant?

	 MMF is a prodrug converted into active 
mycophenolic acid in body and inhibits inosine mono 
phosphate dehydrogenase, a critical enzyme required in 
de novo purine biosynthesis. Inhibition of this enzyme 
leads to reduction in purine nucleotides and inhibition 
of cellular proliferation. MMF suppresses the monocytic 
production of both pro-inflammatory cytokines and 
microglial mitogen granulocyte macrophage colony 
stimulating factor103. It has also shown to prevent 
microglial activation as well as reduce the neuronal 
damage induced by excitotoxic injury in the in vitro 
model of stroke104. The microglial activation is an 
important pathway of proinflammatory cytokines 
generation, nitric oxide production and activation and 
release of proteases, which leads to neuronal damage105. 

	 Studies on the effects of MMF in animal models of 
CNS disorders are sparse. In mice model of amyotrophic 
lateral sclerosis, MMF treatment reduced microglial 
activation, improved stem cell survival and delayed 
the onset of neurological symptoms106. MMF has also 
shown protection against experimental autoimmune 
myasthenia gravis in rats107 and has also been used against 
inflammatory myopathy and chronic inflammatory 
demylelinating polyradiculoneuropathy108. Thus MMF 
is an interesting candidate but its use in ischaemic brain 
diseases needs further exploration.

Effects of minocycline - an approach to ischaemic 
damages?

	 Minocycline is semisynthetic tetracycline 
derivative, which also possesses anti-inflammatory 
properties that are entirely distinct from its 
antimicrobial action. Studies have shown its 
usefulness in management of rheumatoid arthritis and 
osteoarthritis109. Minocycline has been recognized 
to have numerous pharmacological effects including 
ability to inhibit MMP, superoxide production and 
iNOS expression in human cartilage and murine 
macrophages110,111. Minocycline has been reported 
to penetrate blood brain barrier and provide 
neuroprotection in global ischaemia in gerbils12 
and focal ischaemia in rats13. In these studies the 
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neuroprotection by minocycline was associated with 
reduced activation of microglia and also inhibition 
of induction of IL-1b-converting enzyme (ICE) 
mRNA which was expressed mostly in microglia. 
In nanomolar concentrations it protected neurons 
in mixed spinal cord (SC) as well as pure microglia 
cultures against NMDA excititoxicity112. NMDA 
activated p38 mitogen-activated protein kinase (p38 
MAPK), NO and IL- 1β release were effectively 
inhibited by minocycline in mixed spinal cord and 
pure microglia cultures113. Thus it indicates the direct 
effect of monocycline on microglia activation and 
proliferation. 

	 Minocycline also demonstrated delayed mortality 
in transgenic R 6/2 model of Huntington disease 
by inhibiting caspase 1 and 3 expression as well as 
iNOS activity114. Minocycline treatment exhibited 
protection in MPTP (1-methyl-4-phenyl-1, 2, 3, 
6-tetrahydropyridine) model of Parkinson’s disease, 
this neuroprotection was mediated by reduction in 
expression of inducible NO synthase (iNOS) and 
caspase -1 expression115. Recently a placebo controlled 
open label clinical trial of minocycline in acute stroke 
has shown significant beneficial effects116. To the 
best of our knowledge three clinical trials are under 
investigation to evaluate the effects of minocycline in 
acute ischaemic stroke117. In one study, safe and well 
tolerated doses of minocycline are being evaluated 
whereas in other study minocycline, enoxaparin 
or combination of both will be studied on acute 
ischaemic stroke patients. The effect of minocycline on 
neurological deficits and functional outcomes in acute 
ischaemic stroke patients will be assessed in the other 
enlisted clinical trial117. 

Conclusion

	 Cerebral ischaemia is a multifactorial disorder 
which includes a number of pathways for progression of 
injury to brain cells. Activation of glutamate receptors, 
release of NO, proteases and generation of free radicals 
are important mechanisms in ischaemia. Inflammation 
is considered a major component in disseminating 
the detrimental effects of cerebral ischaemia. 
Circumscription of inflammatory cascade is an integral 
part in ameliorating the harmful consequences in 
cerebral ischaemia. In this respect, immunosuppressive 
agents can prove to be valuable drugs in attenuating 
CNS damage following ischaemia. 

	 Immunosuppressive agents have been shown to 
undermine the CNS damage following ischaemia by 

improved neuronal survival and inhibition of mediators 
of inflammation in various experimental models. In 
vitro experiments using immunosuppressive agents 
have demonstrated the blockade of excitotoxic insult 
induced by NMDA as well as inhibition of microglia 
cells, thus inhibiting inflammatory cascade. In vivo, 
these have been shown to improve the neurological 
functions as seen by neurological assessment paradigms 
and reductions in infarct volume. 

	 More research is required before any definitive 
conclusion is derived for immunosuppressive agents as 
neuroprotectants. Minocycline is the only drug which 
is being evaluated in clinical trials. An important issue 
that needs to be addressed is: can there be a differential 
dose that causes neuroprotective effect than that 
required to cause immunosuppression? If these drugs 
exhibit neuroprotection at much lower doses than that 
required for preventing organ transplant rejection, it 
may be a potential addition to the existing therapeutic 
armamentarium for ischaemic stroke. This will require 
well designed clinical trials to evaluate short as well 
as long term clinical outcomes vis-a-vis side effect 
profile of each drug and translate it into improvement 
in quality of life of stroke patients. 
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