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Highly Pathogenic Avian Influenza (HPAI) H5N1 virus is a threat to animal and public health worldwide. Till date,

the H5N1 virus has claimed 402 human lives, with a mortality rate of 58% and has caused the death or culling of

millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865)

targeting PB2 and NP genes of avian influenza virus and evaluated their potential, measured by hemagglutination

(HA), plaque reduction and Real time RT-PCR assay, in inhibiting H5N1 virus (A/chicken/Navapur/7972/2006)

replication in MDCK cells. The siRNAs caused 8- to 16-fold reduction in virus HA titers at 24 h after challenged with

100TCID50 of virus. Among these siRNAs, PB2-2235 offered the highest inhibition of virus replication with 16-fold

reduction in virus HA titer, 80% reduction in viral plaque counts and 94% inhibition in expression of specific RNA at

24 h. The other two siRNAs had 68–73% and 87–88% reduction in viral plaque counts and RNA copy number,

respectively. The effect of siRNA on H5N1 virus replication continued till 48h (maximum observation period). These

findings suggest that PB2-2235 could efficiently inhibit HPAI H5N1 virus replication.
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1. Introduction

Avian influenza (AI) is a highly infectious respiratory dis-

ease of domestic poultry caused by Influenza A virus (IAV)

of the family Orthomyxoviridae. IAVs are enveloped viruses

containing eight segments of single-stranded, negative-sense

RNA as viral genome that encodes for at least 13 proteins

(Muramoto et al. 2013; Dubois et al. 2014). The viruses are

categorized into distinct subtypes based on the genetic and

antigenic make up of two surface glycoproteins,

haemagglutinin (HA) and neuraminidase (NA). Till date,

18 HA (HA1-18) and 11 NA (NA1-11) subtypes have been

identified (Fouchier et al. 2005; Tong et al. 2012, 2013).

IAVs infecting poultry can further be divided into two major

pathotypes on the basis of their ability to cause disease; the

very virulent viruses are termed as highly pathogenic avian

influenza (HPAI), in which the flock mortality is as high as

100%. These viruses have been restricted to subtypes H5 and

H7, although not all viruses of these subtypes cause HPAI.

All other viruses cause a much milder disease consisting

primarily of mild respiratory disease, depression and prob-

lem in egg production and termed as Low Pathogenic Avian

Influenza (LPAI) (Capua and Alexander 2009).

Outbreaks of HPAI H5N1 virus infection in poultry that

started in late 2003 in Southeast Asia are still continuing by

infecting domestic poultry, wild birds and sporadic zoonotic
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transmission to humans thereby revealing its potential to

cause the next pandemic. As on 6th January 2015, H5N1

viruses have killed 402 out of 694 laboratory-confirmed

human infections in 16 countries (WHO 2015), with a mor-

tality rate of around 58%. At present, the H5N1 viruses are

endemically circulating in poultry in few countries in Asia

and Africa (FAO 2011). For control of HPAI in birds,

majority of the countries have followed stamping-out meth-

od (Swayne et al. 2011). However, few countries have

adapted vaccination for control of HPAI in poultry. The

use of anti-influenza vaccines and drugs has limitations due

to emergence of variants to vaccines (Savill et al. 2006;

Domenech et al. 2009; Cattoli et al. 2011; Wang et al.

2012) and anti-influenza drugs (Cheung et al. 2006; Hurt

et al. 2007; He et al. 2008; Boltz et al. 2010; Tosh et al.

2011; Govorkova et al. 2013). Besides, the vaccine strain

selection is so stringent that vaccination against one lineage/

clade of virus does not afford protection to the challenge

virus from other clades in poultry (Cha et al. 2013). Because

of the global human and animal health importance of the

H5N1 HPAI, developing an alternative antiviral agent

against H5N1 is urgently needed.

RNA interference (RNAi) is a process by which double-

stranded RNA duplexes (21–26 nt long) inhibit the gene

expression by inducing sequence-specific degradation of

homologous mRNA. The sequence-specific knockdown of

viral genes in infected cells without affecting on host gene

expression has generated great interest in development of

small interfering RNAs (siRNAs)-based antiviral therapeu-

tics (Elbashir et al. 2001; Morris and Rossi 2006). Previous

reports have shown that the siRNAs could effectively inhibit

IAV replication both in vivo and in vitro (Ge et al. 2003; Li

et al. 2005; Zhou et al. 2007; Sui et al. 2009; Zhang et al.

2009; Li et al. 2011).

Polymerase Basic-2 (PB2) and nucleoprotein (NP) are

integral components of ribonucleoprotein (RNP) complex

playing crucial roles in influenza virus life cycle in associa-

tion with other polymerase proteins (PB1 and PA). At the

onset of replication, PB2 initiates the cap-snatching process

by recognizing and binding to 7mGpppGpNm cap near the

5′ termini of host mRNA (Kowalinski et al. 2012; Sikora

et al. 2014). The PB2 also play an essential role during

genome packaging along with PA and matrix (Gao et al.

2012). NP functions as an adapter between the virus and host

cell processes to maintain the viral genome integrity. After

release of RNP into the cell cytoplasm, NP interact with

many macromolecules of cellular origin (importin α, actin

filament, nuclear export receptors and cellular splicing fac-

tors) to facilitate transcription, replication and translation of

viral genome (Portela and Digard 2002; Zheng and Tao

2013).

In this study, we designed specific siRNAs in the con-

served regions of the PB2 and NP genes, and evaluated their

abilities to inhibit replication of the H5N1 HPAI virus

(A/chicken/Navapur/7972/2006) in vitro.

2. Materials and methods

2.1 Cell culture and virus titration

Madin-Darby Canine Kidney (MDCK) cells were main-

tained in Glasgow Minimum Essential Media (GMEM;

Sigma, USA) supplemented with 10% heat-inactivated fetal

bovine serum (Hyclone, USA) and antibiotics (100 U/ml

penicillin and 100 μg/mL streptomycin) in 5% CO2 environ-

ment at 37°C. Avian influenza H5N1 virus (A/chicken/

Navapur/7972/2006) isolated during HPAI outbreak in

chickens in Maharashtra, India was used in the study. The

virus was grown initially in the allantoic cavity of 10-day-

old embryonated chicken eggs at 37°C and subsequently the

virus was propagated in MDCK cells in GMEM supplement-

ed with antibiotics. The virus infectivity titre (50% Tissue

Culture Infectivity Dose; TCID50) was determined by stan-

dard method (Reed and Muench 1938). The infected cell

culture supernatants were clarified by centrifugation,

aliquoted, and stored at −80°C for further use. All experi-

ments with the H5N1 virus were performed in the contain-

ment laboratory (BSL-3) of ICAR-National Institute of High

Security Animal Diseases, Bhopal.

2.2 siRNAs

siRNAs (table 1) targeting conserved regions in the PB2 and

NP genes were designed according to the web-based criteria

(www.ambion.com). The siRNAs duplexes were labelled

with fluorescent dye (Alexa Fluor 488) at 3′ end and syn-

thesized commercially (Sigma, USA).

2.3 siRNA transfection and virus challenge

siRNAs at a concentration of 125 pmol and 250 pmol were

diluted in serum-free-media (Opti-MEM I; Invitrogen, USA)

and transfected in triplicates to logarithmic-phase MDCK

Table 1. siRNAs used in this study

siRNA Sequence

PB2-479 sense 5′- GAUGUCAUCAUGGAGGUCGdTdT- 3′,

antisense 3′ -dTdTCUACAGUAGUACCUCCAGC- 5′

PB2-2235 sense 5′ –ACGGAAACGGGACUCUAGCdTdT -3′,

antisense 3′- dTdTUGCCUUUGCCCUGAGAUCG -5′

NP-865 sense 5′ -GUCCUGCUUGCCUGCUUGUdTdT- 3′,

antisense 3′- dTdTCAGGACGAACGGACGAACA -5′
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cells (60–70% cell confluency) at 30th passage level in 24-

well plates using X-treme® Gene Transfectant (Roche,

USA). Mock transfection (no siRNA) was kept as negative

control. The transfection efficiency was assayed by direct

visualization of cells under UV fluorescent microscope.

About 16 hrs after transfection, the transfection medium

was removed and cells were inoculated with influenza virus

A/chicken/Navapur/7972/2006 (H5N1) with 100 TCID50/

well. Following 1 h adsorption, cells were washed; wells

replaced with 500 μL GMEM without serum and incubated

at 37°C under 5% CO2 environment. Infected cell superna-

tants were collected at 24, 36 and 48 h post infection (p.i.),

clarified by centrifugation, aliquoted, and stored at −80°C

for further use. Virus titer was determined by hemagglutina-

tion assay, plaque assay and real time PCR assay.

2.4 Hemagglutination assay

Titration of the virus in the infected cell supernatants

were carried out as described previously (OIE 2012).

The hemagglutination (HA) assay was carried in V-

bottom 96-well micro-titre plate using 1% chicken RBC

as indicator system.

2.5 Plaque assay

Plaque assay for virus titrations was performed as described

previously (Bright et al. 2008) with little modification.

Confluent monolayers of MDCK cells in 24-well plates were

inoculated with 50 μL of virus serially diluted (10-fold) in

GMEM without serum. Virus was allowed to adsorb onto

cells for 1 h at 37°C and 5% CO2 environment with gentle

rocking every 15 min. The inoculum was removed and cells

were washed and overlay with 1% SeaPlaque Agarose

(Lonza, USA) containing 2.5% FBS and antibiotics, and

incubated at 37°C under 5% CO2 environment. Three days

after infection, the plaques were visualized by staining with

0.1% crystal violet solution. Plaque-forming units (PFU)

was counted from three independent experiments and the

drop in plaque counts was expressed in percentage

reduction.

2.6 Cloning and in vitro transcription of PB2 and NP

genes

Viral RNA was isolated from infected cell culture superna-

tant using QIAamp viral RNA mini kit (QIAGEN,

Germany). The viral RNA was reverse-transcribed using

AMV Reverse Transcriptase (Promega, USA) and IAV uni-

versal primer (Hoffmann et al. 2001). Full length PCR

amplification of the PB2 and NP genes was carried out with

Taq DNA polymerse (Promega, USA) using segment-

specific primers (Hoffmann et al. 2001). The PCR amplified

products were purified with the QIAquick gel extraction kit

(Qiagen, Germany) and cloned into pTZ57R/T vector

(Fermentas, USA). Recombinant plasmids containing the

full length sequences of the PB2 and NP genes of

A/chicken/Navapur/7972/2006 in pTZ57R/T vector were

linearized using vector specific XbaI restriction enzyme

(MBI Fermentas, USA). The plasmids containing the genes

were in vitro transcribed (IVT) using T7 Transcription Kit

(Fermentas, USA). The quantification of IVT RNA was

carried out using Qubit® Fluorometer and Quant-iTTM

RNA Assay Kit (Invitrogen, USA) according to the instruc-

tions of the manufacturer. The copy numbers of the RNA

transcripts were determined as previously reported

(Nagarajan et al. 2012).

2.7 SYBR Green real-time RT-PCR

The concentrations of IVT RNAs and their deduced RNA

copies were estimated as described previously (Nagarajan

et al. 2012). With modification of the protocol described

earlier (Santhosh et al. 2007), standard curves were prepared

from ten-fold serially diluted IVT RNA of PB2 and NP

genes in presence of gene specific primers using Brilliant II

SYBR® Green QRT-PCR Master Mix (Stratagene, USA) in

Light Cycler® 480 Real Time PCR System II (Roche, USA).

One set of primer for PB2 gene (Forward: 469-AAAGAA

GCACAAGATGTCATCATGGA-494 and Reverse: 947-

CCCATTGCTGCTTTGCATATA-927 designed using

LightCycler Probe Design Software 2.0, Version 1.0

Roche, USA) and previously reported NP gene primer

(Nagarajan et al. 2012) were used in the study. A

single-Step QRT-PCR of 12.5 μL containing 6.25 μL

of 2× master mix, 0.4 μL of passive reference dye

(1:500 dilution), 0.5 μL each of the forward and reverse

primers (5 pmole), 1 μL of RNA, 0.5 μL of Enzyme

mixture (RT/RNase Block Enzyme) and 3.35 μL of

nuclease free water. No template, no primer and buffer

controls were also included in the test. The thermal

profile included one cycle of reverse transcription at

50°C for 45 min, one cycle of polymerase activation at

95°C for 10 min followed by 40 PCR cycles of dena-

turation (95°C for 30 s), annealing (50°C for 30 s) and

extension (72°C for 30 s) and one cycle of final exten-

sion at 72°C for 10 min. A melting curve analysis was

performed, where the one cycle of 95°C for one min

and cooling to 50°C temperature was followed by in-

crease in temperature by 0.5°C every 10 s, till 95°C

under continuous data acaquision mode. Data analysis

for estimated viral copies was performed using the sec-

ond derivative method of the instrument extrapolating

the standard curves.
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2.8 Preparation of standard curve

Ten-fold serial dilutions (from log 10−1 to log 10−10) of the

quantified RNA standards of the PB2 and NP genes were

tested in triplicate using SYBR green Real Time RT-PCR

protocol described under section 2.7. The Cp values obtain-

ed against the known concentration of the RNA standards

were used for construction of standard curve.

2.9 Statistical analysis

One-way analysis of variance (ANOVA) was used to com-

pare multiple groups using SPSS 16.0 software. Pair wise

comparison between different groups was done by Tukey’s

post hoc analysis. p<0.05 was considered as statistically

significant level.

3. Results

siRNAs targeting three conserved regions (PB2-479, PB2-

2235 and NP-865) were designed to study the inhibition of

avian influenza H5N1 virus (A/chicken/Navapur/7972/2006)

replication in vitro. In the blast search at National Center for

Biotechnology Information (http://blast.ncbi.nlm.nih.gov/

Blast.cgi), none of the siRNAs were found sequence homol-

ogy with human genome or any other host genome. All the

siRNAs were found to have sequence homology with hu-

man, avian and swine strains of IAVs. To test whether these

siRNAs inhibited influenza virus replication, they were

transfected into a monolayer of MDCK cells. As the

siRNAs were labeled with Alexa Fluor 488 at 3′ position,

the efficiency of transfection was visualized under UV mi-

croscope after 16 h post transfection and the fluorescence

intensity was almost double in wells with 250 pmol of

siRNA compared to that of 125 pmol (data not shown).

As shown in table 2, virus production (titre in HA units)

in the infected cell culture supernatants was significantly

lower in the three specific siRNAs-treated cells than in the

control (no siRNA). Moreover, siRNAs caused a reduction

of 8- to 16-fold in virus HA titers compared with the control

at 24 h. Among these siRNAs, PB2-2235 showed the highest

inhibition activity (16-fold reduction) even at 48 h of virus

challenge (maximum observation period). With PB2-2235,

the inhibition was so pronounced that culture supernatants

lacked detectable HA activity at 24 h with 125 pmol of

siRNA (Table 2). From the result it is evident that the extent

of inhibition of virus production was siRNA dose-dependent

manner. For example, treatment of 125 pmole of PB2-479

and NP-865 reduced virus production to 2 HA titre, whereas

there was no detectable HA titre with treatment of 250 pmol

of the same siRNA. The effect of siRNA on influenza virus

production was continued till 48 h, the maximum observa-

tion period.

To further evaluate the antiviral effect of the siRNAs,

plaque assay and real time RT-PCR assay were conducted

in infected cell culture supernatants. In the plaque assay,

there was reduction of 50–80% of viral plaque counts with

treatment of 250 pmol of siRNAs compared to the control

(figure 1). However, with treatment of 125 pmol of siRNAs,

the reduction of plaque count was 40–68%. The PB2-2235

offered the highest inhibition of virus production compared

to the PB2-479 and NP-865 (figure 1). With treatment of 250

pmol of siRNA, highest reduction of 80% in viral plaque

counts was observed at 24 h with PB2-2235 compared to

68–73% with PB2-479 and NP-865. The effect of siRNAs

on influenza virus replication was observed till end of the

experiment (48 h) with reduction of virus plaques of 50–55%

and 40–45% with 250 and 125 pmol of siRNAs, respective-

ly. Plaque reduction was highly significant (p<0.0001) be-

tween groups at all three time intervals. Tukey’s post hoc

analysis revealed that pair wise comparison also significantly

different between groups. Mean plot analysis revealed that

treatment of 250 pmole of siRNA PB2-2235 was significant-

ly better than other groups at all three time intervals.

In SYBR Green Real time RT PCR, the minimum detec-

tion limit of PB2 gene was found to be 2.34×104 (SD±0.044)

and the 478 bp product displayed melting peak at

82(±0.5)°C. Similarly for NP gene, we found the detection

limit to be 2.11×103 (SD±0.106) and the 445bp amplicon

shows a melting temperature of 83(±0.5)°C.

Evaluating the inhibition in real time RT-PCR assay,

siRNAs caused 66–94% reduction in RNA copy number at

24 h with treatment of 250 pmole siRNA, whereas the

reduction was 47–91% with 125 pmol of siRNAs (figure 2).

Out of the three siRNAs, PB2-2235 offered the highest

inhibition with 91% and 94% reduction in RNA copy num-

ber compared to control with 125 and 250 pmol of siRNAs,

respectively. The other two siRNAs had similar anti-

influenza activity with maximum (87-88%) inhibition in

Table 2. Effects of siRNAs on H5N1 virus production in MDCK

cells

siRNA siRNA
concentration
(pmol)

Virus production (titre in HA units) at:

24 h 36 h 48 h

PB2-2235 125 1 8 32

250 1 4 16

PB2-479 125 2 8 64

250 1 4 32

NP-865 125 2 16 64

250 1 8 32

mock - 16 32 256
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RNA copy number at 24 h with 250 pmole of siRNAs.

Specific anti-influenza activity persisted for 48 h (maximum

observation period) as seen from the inhibition of RNA copy

number compared to the control.

Copy number was highly significant (p<0.0001) between

groups at all three time intervals. Tukey’s post hoc analysis

revealed that pair wise comparison is also significant

(p<0.001) among the groups except between 125 pmol of

siRNA PB2-479 and 250 pmole of siRNA NP-865. Mean

plot analysis revealed that treatment of 250 pmol of siRNA

PB2-2235 was significantly better than others at all three

time intervals.

4. Discussion

HPAI H5N1 virus continues to be a significant threat to

animal and public health worldwide. The anti-influenza vac-

cines and drugs have their limitations due to emergence of

variants to vaccines and anti-influenza drugs. Development

of novel antivirals to combat the economic and public health

impact of HPAI H5N1 virus remains a priority. RNA inter-

ference had been used as an effective strategy for its specific

silencing of viral gene expression in mammalian cells.

For an effective RNAi study, the siRNAs should be de-

signed targeting the conserved regions of viral mRNAs. Due to

high sequence variability, studies related to HA and NA genes

have not been reported so far. Previous studies with siRNAs

directed against NP, PA, NS1 and M2 genes have established

that conserved genes offer higher protection rate during H5N1

infection in vivo and NP, PA, M, PB1 and PB2 genes in vitro

(Ge et al. 2003; Zhou et al. 2007; Zhang et al. 2009; Stewart

et al. 2011). Since recent studies have indicated that PB2 and

NP genes play a crucial role in the virus replication and

packaging, siRNAs against these two genes should inhibit

most influenza virus replication and hence used in this study.

All the three siRNAs inhibit the influenza virus produc-

tion, but with varying degrees. Anti-influenza properties of

the siRNAs continued till the end of the experiment (48 h) as

revealed from the reduction in HA titre, viral plaque counts

and RNA copy number in the virus infected cell culture
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supernatants. Out of the three siRNAs, the PB2-2235 offered

the highest anti-influenza effects with no detectable HA titre

leading to 68–80% reduction in viral plaque counts at 24 h

with both the concentrations (125 and 250 pmol) of siRNA

(table 1 and figure 1). The real time PCR assay estimated 91-

94% reduction in RNA copy number with same concentra-

tions of PB2-2235 at 24 h. However, despite of a rational

design in the conserved regions of PB2 gene, the extent of

antiviral activity of another siRNA against PB2 (PB2-479) is

less prominent (79–87% reduction in RNA copy number at

24 h with both the concentrations). PB2-2235 inhibited

H5N1 virus replication more efficiently than PB2-479 indi-

cating that this difference in efficacy cannot be ascribed

solely due to the differences in transfection efficiency and

further signifies that PB2-2235 is a potent site for further

in vivo experiments. Here both the siRNAs shared complete

sequence match to H5N1 challenge virus (A/chicken/

Navapur/7972/2006), thus possible reason could be the tar-

get site accessibility to RISC (RNA-induced silencing

complex) for binding of siRNAs, as the GC-content in both

cases are close 50% (PB2-2235: 52% and PB2-479: 48%).

Previous studies have shown that target site accessibility/

mRNA secondary structure is equally important to the GC-

content for efficient RNA interference (Chan et al. 2009), as

RISC involved in mRNA degradation is unable to unfold the

structured RNA (Ameres et al. 2007). The PB2 RNA second-

ary structure prediction (data not shown) by mfold server

(http://mfold.rit.albany.edu/?q=mfold/download-mfold)

showed that both the siRNAs are targeted to different regions;

PB2-2235 – loop region, PB2-479 – hairpin structure. Our

study is also in agreement with the result of Luo and Chang

(2004), where they have shown that siRNA forming a hairpin

structure are usually less effective in gene silencing. In case of

NP-865, like PB2-479, hadmoderate anti-influenza effect with

60–68% reduction in viral plaque counts and 73–88% reduc-

tion in RNA copy number at 24 h. Our findings demonstrate

that the inhibition of the viral replication by siRNA is inversely

correlated to the time after virus challenge but directly corre-

lated to the dose of the siRNA. The inverse correlation of the

viral replication by siRNA directed against PB2 to the time

after virus challenge has also been reported by Ge et al. (2003).

Even though the method of virus titration is different (TCID50

in our study and multiplicity of infection (moi) in the reported

study), both the studies have usedMDCK cell line. In this case,

1 mL of virus stock would be expected to have about half of

the number of plaque forming units (PFUs) as TCID50 (http://

w ww . a t c c . o r g / ~ / m e d i a / PDF s / w e b i n a r s / Q A _

Webinar_Influenza.ashx). As Ge et al. (2003) used 0.01 moi

(50 pfu), the estimated TCID50 is 100, which is the same virus

titre used in our study. However, Ge et al. (2003) used 2.5 nmol

of PB2-2240 siRNA compared to 250 pmol of PB2-2235

siRNA used in this study, indicating that the PB2-2235 could

inhibit H5N1 virus replication at 10-fold lesser dose. Stewart

et al. (2011) reported that addition of immunostimulatory

motifs to the 5′ end of the sense strand of siRNAs enhanced

anti-H5N1 HPAI viral targeting by increasing the expression

of IFN-b in chicken cells. Further studies are needed to ascer-

tain the mechanism by which the siRNAPB2-2235 inhibits the

replication of H5N1 HPAIV in vitro and whether addition of

immunostimulatory motifs to it will enhance inhibition of

H5N1 virus replication.

In summary, the study shows promising result in treating

HPAI H5N1 virus infection with siRNAs. Among the

siRNAs studied PB2-2235 exhibited the highest inhibition

of H5N1 virus replication in MDCK cells. However, further

in vivo experiments are needed to prove its potential in

therapeutic application against influenza virus infection.
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