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Combustion of fossil fuels and resultant emission of carbon dioxide has led to increased global temperature. Since 

cyanobacteria are an integral component of the paddy field microflora and contribute to nitrogen fixation, increase in 

temperature may adversely affect the nitrogen dynamics of the soil. Therefore, to understand the physiological and 

biochemical response of the mesophilic diazotrophic cyanobacterium Anabaena doliolum to elevated temperature, the 

organism was grown under three temperature regimes 30, 35 and 40°C for 15 days. Exposure of the cyanobacterium to 40°C 

resulted in severe reduction in growth and cellular constituents as compared to the cells exposed to 35°C. The cyanobacterial 

cells also showed enhanced production of H2O2 and lipid peroxidation products in response to exposure to elevated 

temperature. Further, we observed increased activity of superoxide dismutase, catalase and peroxidase in A. doliolum 

exposed to elevated temperature. Increase in the temperature resulted in enhanced level of non-enzymatic antioxidants such 

as carotenoid, proline and ascorbate. Although, the number of heterocysts increased in response to temperature, the 

nitrogenase activity decreased significantly. The results have demonstrated the sensitivity of the cyanobacterium A. doliolum 

to elevated temperature. 
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The cyanobacteria, commonly known as blue-green-

algae are Gram-negative prokaryotes capable of 

performing oxygenic photosynthesis and nitrogen 

fixation. These organisms are able to survive on 

minimum requirement of light, carbon dioxide and 

water and their occurrence in several agro-eco 

systems have been discussed
1
. The ability of 

cyanobacteria to fix atmospheric nitrogen makes them 

important in any ecosystem
2
. It has been observed that 

the nitrogen fixing cyanobacteria play an important 

role in improving the productivity of nitrogen 

deficient paddy soils. Application of cyanobacteria 

has been reported to contribute about 20-30 kg N ha
-1

 

as well as organic matter to the soil
3
. 

Human activities coupled with rapid 

industrialization have resulted in drastic changes in 

the environment. Mckenzie et al.
4
 has reported that 

the global mean temperature change over the 21
st
 

century is about 5-fold greater than in the past 

century. The cyanobacteria have great evolutionary 

significance and are useful as model for prokaryotic 

microorganisms to understand the physiological 

processes. The photosynthetic apparatus of 

cyanobacteria is similar to higher plants and the 

ability to fix nitrogen makes them unique and 

agronomically important. Since cyanobacteria are 

eco-friendly and important as bioinoculants in 

agriculture, understanding their response to elevated 

temperature is important. In cyanobacteria such as 

Anacystis nidulans, elevated temperature stress has 

been reported to degrade the phycobiliproteins
5
. In 

Anabaena doliolum, induction of antioxidative 

enzymes in response to elevated temperatures has 

been observed
6
. Here, we studied the impact of 

elevated temperature on growth, cellular constituents, 

nitrogen fixation and antioxidant enzymes in the 

cyanobacterium Anabaena doliolum.   

 

Materials and Methods 

The experimental organism Anabaena doliolum 

was provided by Prof. AK Rai, Department of 

Botany, Banaras Hindu University, Varanasi, Uttar 

Pradesh, India. A. doliolum was routinely maintained 

in BG-11 medium without added nitrogen. The pH of 

the medium was adjusted to 7.5 and the cultures were 

routinely maintained in a culture room at 30°C 

illuminated with white fluorescent tubes emitting  

72 µmol photon m
-2

s
-1

 PAR (photosynthetically active 

radiation). Cultures were shaken manually at least two 
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to three times a day. For high temperature treatment, 

the exponentially growing organism was exposed to 

35 and 40°C in temperature controlled incubator 

(BOD) for 15 days and various parameters have  

been studied.  

The dry weight of the cyanobacteria was recorded 

according to Sorokin
6
. Protein content was estimated 

by the method of Lowry et al.
8
 using bovine serum 

albumin as standard. Total sugar content was 

estimated by the method of Spiro
9
 using glucose as 

standard. Total chlorophyll content was determined 

by cold extraction method
10

 and the carotenoid 

content was determined by the method of Jensen
11

. 

The number of heterocysts per hundred vegetative 

cells is referred to as heterocyst frequency. For the 

estimation of nitrogenase acetylene reduction assay 

was performed according to Stewart et al.
12

. The 

nitrogenase activity was expressed in terms of nmol 

C2H4 mg chlorophyll
-1

h
-1

.  

Lipid peroxidation was assessed by measuring the 

total thiobarbituric acid reactive substances and it is 

expressed as equivalnent of malondialdehyde (MDA) 

with minor modifications as suggested by Cakmak 

and Horst
5
. Total peroxide content was estimated 

according to the protocol given by Sagisaka
13

. 

Superoxide dismutase activity (SOD) was estimated 

by recording the decrease in the optical density of 

formazone made by superoxide radical and nitro-blue 

tetrazolium dye by the enzyme
14

. Ascorbate 

peroxidase (APX) was assayed by recording the 

decrease in optical density due to ascorbic acid at  

290 nm
15

. Catalase activity was assayed by measuring 

the disappearance of H2O2 according to Aebi
16

. 

Proline content was estimated according to the method 

of Bates et al.,
17

. All the experiments have been 

conducted in triplicate using triplicate samples and the 

data was further analyzed by Pearson correlation.  

 

Results and Discussion 

The growth of the cyanobacterium A. doliolum 

exposed to elevated temperature of 35 and 40°C was 

recorded in terms of increment in the dry weight. 

Significant decline in the growth of cyanobacterium 

was observed due to exposure to elevated temperature 

(P >0.01, Fig. 1). While, the cyanobacteria showed 

reduced growth at 35°C, the growth reduction was 

more pronounced at 40°C. This indicated a 

differential and general response of the 

cyanobacterium A. doliolum to increase in the 

ambient temperature and inability to adapt to the 

changes in the ambient temperature. Mutant strain of 

A. doliolum able to tolerate elevated temperature has 

been developed
18

. In the cyanobacterium Spirulina 

platensis elevated temperature inhibited the growth 

and biomass production
19

. Reduced growth of the 

cyanobacterium A. doliolum to elevated temperature 

is probably a consequence of decrease in 

photosynthesis. Decrease in photosynthetic efficiency 

due to high temperature has been observed in 

cyanobacteria
20

. Further, decrease in the chlorophyll 

content was also noticed in the cyanobacterium  

A. doliolum due to high temperature (Table. 1). 

Reduced biosynthesis of chlorophyll as well as its 

destruction has been reported to be one of the 

consequences of high temperature in plants
21

. 

Therefore, reduction in the chlorophyll content due to 

elevated temperature may lead to reduction in the 

photosynthetic efficiency and reduction in growth. 

 
 

Fig.1 — Growth of Anabaena doliolum (dry weight) in response 

to elevated temperature. [The cyanobacterium was grown in BG 

11 medium without nitrogen under standard growth conditions] 

Table 1 — Effect of elevated temperature on cellular constituents of the cyanobacterium Anabaena doliolum 

Temperature 

(°C) 

Total sugar  

(µg g-1 dry wt.) 

Protein  

(µg g-1 dry wt.) 

Lipid  

(% dry wt.) 

Chlorophyll  

(µg mg-1 dry wt.) 

30(Control) 78.5±0.68 162.6±1.13 11.4±0.06 7.8±0.72 

35 64.7±0.34 148.4±1.21 14.9±0.13 5.02±0.61 

40 39.2±0.28 81.4±1.32 18.6±0.20 1.24±0.19 
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There are reports on decrease in photosynthesis and 

reduced growth of the cyanobacterium in response to 

elevated temperature
22

. 

While, the protein and sugar content decreased in 

response to elevated temperature, the lipid content 

increased (Table. 1). Exposure of the cyanobacterium 

to elevated temperature resulted in marginal reduction 

in the protein content (8.2 and 49.9%) whereas the 

sugar content decreased significantly (17.6 and 51.1%) 

due to exposure to elevated temperature of 35 and 

40°C. One of the classical symptoms associated with 

heat stress in plants is protein degradation
23

. The 

observed changes in the pattern of accumulation 

protein in response to elevated temperature has been 

supported by the observations of Panyakampol et al.
24

. 

Significant increase in the lipid content was noticed in 

response to elevated temperature. Stabilization of the 

membranes is important to maintain the essential 

physiological processes in response to elevated 

temperature. Temperature induced increase in the lipid 

is probably due to the need to stabilize the membranes 

to maintain the essential physiological processes. 

Enhancement in the lipid content in microalgae 

subjected to higher temperature has already been 

observed
25

. Stabilization of membranes by increasing 

the degree of fatty acid saturation is thus important 

during adaptation to temperature stress
26

.  

The heterocyst frequency of the cyanobacterium 

decreased due to exposure to elevated temperature 

whereas significant reduction in the nitrogenase 

activity was observed (P >0.01, Fig. 2). Defective 

heterocysts allow oxygen to diffuse in leading to 

inactivation of the enzyme nitrogenase. Elevated 

temperature induced changes in the composition of 

the heterocyst cell envelope in the heterocystous 

cyanobacteria Anabaena sp. strain CCY9613 and 

Nostoc sp. strain CCY9926 in relation to temperature 

was observed
27

. Furthermore, the process of nitrogen 

fixation was found to be sensitive to temperature
28,29

. 

The carotenoid and proline content of the 

cyanobacterium A. doliolum showed a significant 

increase in response to elevated temperature  

(Fig. 3A). Increase in carotenoid content by 1.12 and 

2.7% when exposed to 35 and 40°C. Carotenoid is an 

important antioxidant and increase in temperature has 

resulted in enhanced carotenoid of the cyano-

 
 

Fig. 3 — (A) Effect of elevated temperature on the carotenoid and 

proline content; and (B) MDA and H2O2 content of A. doliolum in 

response to elevated temperature. [Bars represent mean ± SD of 

three independent observations] 

 
 

Fig. 2 — Effect of elevated temperature on the heterocyst 

frequency and nitrogenase activity of A. doliolum. [Bars represent 

mean ± SD of three independent observations]  
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bacterium Nostoc muscorum
30

. Carotenoids play an 

important role in photoprotection in response to 

abiotic stress and its role in preventing oxidative 

damage to membranes have been reported
31

. 

However, the increase carotenoid content of the 

cyanobacterium A. doliolum exposed to temperature 

was negligible. The quantum of the pigment and its 

increase due to the stress condition depends on the 

species, duration of exposure and inherent ability to 

tolerate the stress conditions
32

. Therefore, it could be 

surmised carotenoids have limited role in countering 

the stress induced by high temperature in the 

cyanobacterium A. doliolum. The proline content 

increased in the cyanobacterial cells exposed to 

elevated temperature. Enhanced synthesis of proline 

in plants conferred significant increase in the heat 

stress tolerance
33

. Increase in proline content was 

reported in the mesophilic cyanobacterium Nostoc 

muscorum in response to temperature stress
34

. Hence, 

increase in the proline accumulation is correlated with 

the ability to tolerate high temperature.  

A. doliolum cells exposed to temperature showed 

significant increase in the peroxides (H2O2) and 

malondialdehyde (MDA) content (Fig. 3B). 

Overproduction of ROS in response to heat stress has 

been observed
35

. Mishra et al.
6
 observed increase in 

H2O2 content in the cyanobacterium A. doliolum 

exposed to elevated temperature. Exposure to 

temperature stress results in excessive accumulation 

of reactive oxygen species
36

. Thus, exposure to 

elevated temperature increased lipid peroxidation 

products and resulted in oxidative stress damage in 

cyanobactria
37

. De Silva & Asaeda
38

 correlated 

increase in the peroxide content with oxidative stress 

in submerged aquatic macrophytes. Kaushal et al.
39

 

observed that increased levels of MDA due to 

elevated temperature indicate possible damage to  

the membranes.  

The enzyme super oxide dismutase (SOD) 

catalyzes the dismutation of superoxide radicals to 

H2O2 and O2. Further, scavenging of H2O2 is done by 

APX and CAT which prevent the peroxide damage to 

the cellular constituents by minimizing its 

accumulation and diffusion across membranes
40

. The 

antioxidant enzyme activity of the cyanobacterium 

exposed to temperature was investigated (Fig. 4). In 

general, stress conditions induced enhanced 

antioxidant enzyme activity
41

. Elevated temperature 

enhanced the antioxidant enzyme activity of the 

cyanobacterium Microcystis aeruginosa
42

. Upregulation 
of antioxidant enzymes was observed n cyanobacteria 

to counter oxidative stress
43

. For mitigation of lipid 

 
 

Fig. 4 — Antioxidant enzyme activities (A) SOD; (B) APX; and 

(C) CAT of A. doliolum exposed to elevated temperature. [Bars 

represent mean ± SD of three independent observations] 
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peroxidation induced membrane damage maintenance 

of high levels of antioxidant activity is required
44

. In 

M. aeruginosa increase in antioxidant enzyme activity 

was reported in response to elevated temperature
42

. 

Therefore, increased accumulation of peroxides 

inhibited the growth in A. doliolum despite an 

increase in the activity of antioxidant enzymes.  

Correlation analysis was performed to understand 

the effect elevated temperature on growth, cellular 

constituents, H2O2, MDA content and antioxidant 

enzymes (Table 2). Decrease in growth due to high 

temperature is positively correlated with chlorophyll 

(r= 0.988), total sugar (r= 0.876) and protein  

(r= 0.968) content. However, the growth of the 

cyanobacterium A. doliolum in response to 

temperature is negatively correlated with lipid content 

(r= -0.996), carotenoids (r= - 0.970), SOD (r= -0.926), 

APX (r= -0.993), CAT (r= 0.993), H2O2 (r=-0.981), 

MDA (r=-0.985) and proline (r= -0.979). These 

results further indicate the adverse impact of elevated 

temperature on the cellular constituents, such as 

chlorophyll, total sugar and protein content of the 

cyanobacterium A. doliolum. 

The present study has demonstrated the sensitivity 

of the cyanobacterium Anabaena doliolum to elevated 

temperature. Exposure to elevated temperature may 

affect the nitrogen metabolism in cyanobacteria and 

alter the dynamics of nitrogen cycling in the 

ecosystem. A. doliolum is an important nitrogen fixing 

cyanobacterium commonly found in rice paddy fields 

and it helps to maintain the nitrogen dynamics. 

Adverse impact of elevated temperature may thus 

increase our dependence on chemical nitrogen 

fertilizers to a certain extent and leads to global 

climate change. 
 

Conclusion 

Exposure of the cyanobacterium to 40°C 

temperature resulted in severe reduction in growth, 

cellular constituents and nitrogen fixation. However, 

the activity of enzymatic and non-enzymatic 

antioxidant enzymes enhanced with corresponding 

increase in the accumulation of peroxides and lipid 

peroxidation products. From the results it appears that 

the cyanobacterium Anbaena doliolum is sensitive to 

elevated temperature. 
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