Silymarin mediated differential modulation of toxicity induced by carbon tetrachloride, paracetamol and D-galactosamine in freshly isolated rat hepatocytes.

No Thumbnail Available
Date
1997-06-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Influence of silymarin on the modulation of hepatotoxicity induced by carbon tetrachloride (CCl4), paracetamol (AAP) and D-galactosamine (GalN) was examined in freshly isolated rat hepatocytes in suspension culture. While the three hepatotoxicants produced differential biochemical response, the flavone was able to restore biochemical alterations only in hepatocytes exposed to CCl4 and AAP induced toxicity. Silymarin at 0.4 mM was able to counteract lipid peroxidation and enzyme leakage induced by 3 mM CCl4 The flavone also offered protection by more than 60% in hepatocytes isolated from PB pre-treated rats where CCl4 at 2 mM produced enhanced toxicity over hepatocytes isolated from untreated control rats. Similarly, the flavone protected AAP-induced GSH depletion by more than 75% in hepatocytes isolated from untreated and 3-methylcholanthrene treated rats. However, instead of protecting GalN-induced depletion of UDP-glucuronic acid in hepatocytes, the flavone itself reduced the nucleotide content very rapidly compared to GalN, the later exerted time dependent effect. Silymarin at 0.4 mM reduced UDPGA by more than 60%. The results suggested that freshly isolated hepatocytes in suspension culture offer a simple and convenient method for evaluation of pharmaceutical agents of antihepatotxic potentials against various hepatotoxicants.
Description
Keywords
Citation
Chrungoo VJ, Singh K, Singh J. Silymarin mediated differential modulation of toxicity induced by carbon tetrachloride, paracetamol and D-galactosamine in freshly isolated rat hepatocytes. Indian Journal of Experimental Biology. 1997 Jun; 35(6): 611-7