Impact of Aluminum Oxide and Silica Oxide Nanocomposite on Foodborne Pathogens in Chicken Fillets

Loading...
Thumbnail Image
Date
2019-03
Journal Title
Journal ISSN
Volume Title
Publisher
Science Domain International
Abstract
Nanotechnology is an innovative technology for improving food quality and safety. Aims: The aim of this study was to evaluate the efficacy of hydroxy propyl methyl cellulose (HPMC) films containing nanoparticles against three foodborne pathogens. Design of the Study: *This study was designed using two nanoparticles i.e. (Al2O3-NPs and SiO2-NPs), edible film (HPMC), and three foodborne pathogens i.e. Bacillus cereus, Staphylococcus aureus, and Salmonella Typhimurium. Both nanoparticles were evaluated against foodborne pathogens as well applied in chicken fillets. Place and Duration: All experiments were done in the Food Technology Department, Benha University, Egypt; Nanomaterial Laboratory, Beni-Suef University, Egypt; and Agricultural Research Center, Egypt and were done within three months. Methodology: The preparation of edible films, the antimicrobial activity, mode of antimicrobial action, challenge study, and scanning electron microscopy had been carried out in different laboratories. As well the mechanical properties of the HPMC films were evaluated. Results: The results obtained from this study showed that the nanoparticles (~80 nm) at 80 ppm were active against Bacillus cereus, Staphylococcus aureus, and Salmonella Typhimurium compared with 20 and 40 ppm. The HPMC films including Al2O3-NPs were active against B. cereus than S. aureus and S. typhimurium, while the SiO2-NPs were more effective against S. typhimurium and B. cereus compared with S. aureus. In challenge studies, HPMC films including Al2O3-NPs and SiO2-NPs at 80 ppm decreased the viability of the three-foodborne pathogens associated with chicken fillets stored at 4±1°C for 15 days, as compared with the control sample. HPMC films incorporated with nanoparticles inhibited the microbial population ~ 2-3 log10 CFU/cm2 over the chicken fillets during storage period. Conclusion: This work indicated that, HPMC films incorporated with Al2O3-NPs and SiO2-NPs (~80 nm) at 80 ppm could be reduce the microbiological loads of the refrigerated chicken fillets.
Description
Keywords
Antimicrobial activity, HPMC edible film, nanoparticles, chicken fillets, cold storage
Citation
Osman Alaa G., El-Desouky Ahmed I., Morsy Mohamed K., Aboud Ahmed A., Mohamed Mahmoud H.. Impact of Aluminum Oxide and Silica Oxide Nanocomposite on Foodborne Pathogens in Chicken Fillets. European Journal of Nutrition and Food Safety. 2019 Mar; 9(2): 152-162