Translocation of plasminogen activator inhibitor-1 during serum stimulated growth of mouse embryo fibroblasts.

Loading...
Thumbnail Image
Date
1990-12
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Serum-stimulated mouse embryo fibroblasts specifically secrete two proteins of molecular weights 48,000 and 26,000. The 48 kDa protein showed affinity to concanavalin A and was precipitated by antibody to plasminogen activator inhibitor. Immunoflowcytometry using anti plasminogen activator inhibitor-1 serum indicate the presence of the 48 kDa protein in quiescent cells; this protein was virtually absent in serum-stimulated cells. The presence of the plasminogen activator inhibitor-1 related protein in quiescent cells and its absence in serum-stimulated cells in combination with the observation on the absence of this protein, in the medium of quiescent cells and its presence in the medium of stimulated cells indicate that the 48 kDa protein was transferred from the cells into the medium upon serum-stimulation. The serum-mediated transfer of plasminogen activator inhibitor-1 from the cells into the medium was inhibited by actinomycin-D suggesting that the transfer process required actinomycin-D sensitive events. Treatment of pre-labelled quiescent cells with medium containing 20% fetal calf serum resulted in the gradual transfer of the labelled 48 kDa protein to the extra cellular matrix. These studies indicate that exposure of quiescent cells to fetal calf serum results in the transfer of plasminogen activator inhibitor-1 from the cells to the growth medium via extracellular matrix. The translocation of the protease inhibitor from the cells to the matrix and medium may enable the cellular and possibly the membrane proteases to act on growth factors or their receptors thereby initiating the mitogenic response.
Description
Keywords
Plasminogen activator inhibitor, deposition, fibroblasts
Citation
Srinivas S, Nagashunmugam T, Shanmugam G. Translocation of plasminogen activator inhibitor-1 during serum stimulated growth of mouse embryo fibroblasts. Journal of Biosciences. 1990 Dec; 15(4): 351-359.