Manganese influx and its utilization efficiency in wheat.

Loading...
Thumbnail Image
Date
2014-06
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Manganese deficiency in wheat has become an important nutritional disorder particularly in alkaline calcareous soils where rice-wheat rotation is followed. This experiment was aimed to study the mechanism of Mn efficiency during various developmental stages in six wheat cultivars grown at two Mn levels viz. 0 and 50 mg Mn kg-1soil (Mnapplied as MnSO4.H20) in pots. The Mn vegetative efficiency calculated on the basis of shoot dry weight at anthesis indicated HD 2967 and PBW 550 (bread wheat) as Mn efficient and durums as Mn inefficient. The efficient cultivars recorded highest values for influx, uptake, shoot dry weight, leaf area/plant, SPAD index, Fv/Fmratio and root length that explained their higher efficiencies whereas inefficiency of durum cultivars was attributed to their smaller roots and lower influx. Under Mn deficiency, PDW 314 and PDW 291 retained 68% and 64%, respectively, of total Mn uptake in vegetative parts (stem and leaves) and lowest in grains 7% and 5%, respectively, whereas PBW 550, BW 9178 and HD 2967 retained 29, 37 and 34% in vegetative parts, and 21, 17 and 15 % in grains, respectively at maturity. Higher utilization efficiency of efficient genotypes also indicated that increased Mn uptake with Mn supply produced more efficiently grains in efficient genotypes but vegetative parts in inefficient genotypes. Hence Mn efficiency of a cultivar could be explained by longer roots, higher uptake, influx and efficiency index during vegetative phase and higher grain yield and utilization efficiency during generative phase.
Description
Keywords
Manganese acquisition, Manganese kinetics, Rhizosphere, Root growth, Wheat grain
Citation
Jhanji Shalini, Sadana Upkar Singh,Shankar Arun, Shukla Arvind Kumar. Manganese influx and its utilization efficiency in wheat. Indian Journal of Experimental Biology. 2014 Jun; 52(6): 650-657.