Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem.

Loading...
Thumbnail Image
Date
2010-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The objective was to examine the adaptation strategies of four maquis species to drought prone environments; typical of the east Mediterranean area in degraded and healthy sites in Turkey. A comparison made between sites for Pistacia lentiscus and Quercus coccifera shows higher net daily photosynthesis in the degraded site, when compared with the healthy site; but Ceratonia siliqua and Olea oleaster exhibited no difference in their photosynthetic activity in environmentally contrasting conditions. The pattern of daily transpiration shows higher values in the degraded site in the case of P. lentiscus and Q. coccifera, while no site effect was observed for C. siliqua and O. oleaster. In the case of Q. coccifera, a behavior similar to C. siliqua was observed. A comparison made between C. siliqua and O. oleaster to observe seasonal differences in daily patterns of net photosynthesis and transpiration reveals that Q. coccifera had the highest water use efficiency (slope= 2.88; r²= 0.61), followed by C. siliqua (slope= 2.74; r²= 0.7), P. lentiscus (slope= 2.56; r²= 0.52) and O. oleaster (slope= 2.40; r² = 0.78). Olea oleaster and P. lentiscus performed as a drought tolerant species, being more resistant to aridity and thus indicative of the degradation state of the site. Ceratonia siliqua and Q. coccifera were found avoiding drought by adopting first a water-spending strategy, and then a water-saving strategy.
Description
Keywords
Drought, Maquis plants, Photosynthesis, Transpiration, Water use efficiency
Citation
Ozturk Munir, Dogan Yunus, Sakcali M Serdal, Doulis Andreas, Karam Fadi. Ecophysiological responses of some maquis (Ceratonia siliqua L., Olea oleaster Hoffm. & Link, Pistacia lentiscus and Quercus coccifera L.) plant species to drought in the east Mediterranean ecosystem. Journal of Environmental Biology. 2010 Jan; 31(1): 233-245.