Polyglutamine expansion in Drosophila: thermal stress and Hsp70 as selective agents.

No Thumbnail Available
Date
2007-04-31
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Repetitive DNA sequences that encode polyglutamine tracts are prone to expansion and cause highly deleterious phenotypes of neurodegeneration. Despite this tendency,polyglutamine tracts ("polyQs") are conserved features of eukaryotic genomes. PolyQs are the most frequent protein-coding homotypic repeat in insect genomes, and are found predominantly in genes encoding transcription factors conserved from Drosophila through human. Although highly conserved across species, polyQ lengths vary widely within species. In D. melanogaster, polyQs in 25 genes have more alleles and higher heterozygosity than all other poly-amino acid tracts. The heat shock protein Hsp70 is a principal suppressor of polyQ expansions and may play a key role in modulating the phenotypes of the alleles that encode them. Hsp70 also promotes tolerance of natural thermal stress in Drosophila and diverse organisms,a role which may deplete the chaperone from buffering against polyQ toxicity. Thus in stressful environments, natural selection against long polyQ alleles more prone to expansion and deleterious phenotypes may be more effective. This hypothesis can be tested by measuring the phenotypic interactions between Hsp70 and polyQ transgenes in D. melanogaster undergoing natural thermal stress, an approach which integrates comparative genomics with experimental and ecological genetics.
Description
53 references.
Keywords
Citation
Bettencourt BR, Hogan CC, Nimali M. Polyglutamine expansion in Drosophila: thermal stress and Hsp70 as selective agents. Journal of Biosciences. 2007 Apr; 32(3): 537-47