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Abstract: The neurons show remodeling in their dendritic arbor and spine/synapse 
number in many brain regions including the hippocampus, amygdala and the prefrontal 
cortex.  The dendritic spine density is reported to be changed due to experiences and 
stressful conditions. The dendritic spines are the small protrusions arising from the 
dendritic shaft of the neurons. They have basic shapes as large mushroom spines, short 
stubby spines and thin spines. The morphology of spines changes rapidly in response to 
various stimuli that may be internal such as hormones and external such as environmental 
changes. Dendritic spine density plays a major role in classification of principal neurons 
i.e. multipolar and pyramidal neurons. The principal neurons may be classified as sparsely 
spinous, moderately spinous and heavily spinous on the basis of density of spine over the 
dendritic branches. In response to environment dendritic remodeling takes place in the 
form of spine shapes, spine turnover and spine density etc. Synaptic plasticity primarily 
takes place in dendritic spines and enriched environment have positive effect while social 
isolation have negative effect on synapse formation. Exposure of animals to environmental 
complexity may improve the learning and memory by providing adaptive changes in the 
dendritic spine density. 
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INTRODUCTION 
 

The adult brain is much more active and adaptable than 

previously believed, and neuronal remodeling involves 
growth and shrinkage of dendritic trees, turnover of synapses 
and neurogenesis in some areas of forebrain. Dendritic spines 
arise as small protrusions from the dendritic shaft of various 
types of neuron and receive inputs from excitatory axons. 
Dendritic spines on neurons were first described in the 1888 
by the legendary neuroanatomist Ramon y Cajal [1, 2]. 
Dendritic spines have variety of shapes and sizes, suggesting 
a high degree of functional diversity. Spines occur at various 
densities depending on the neuronal type and are reported in 
all vertebrates [3] such as reptiles [4-14], birds [15-20] and 
mammals [21-23]. Most of the principal neurons are classified 
by taking spine density as one of the classification criteria. The 
morphology of spines is highly variable and they are 
commonly classified into three types: thin, mushroom and 
stubby (Fig. 1) [24].  The size of dendritic spines varies among 
brain areas, as well as between species according to their 
functional aspect [25].  

The basic structure of synaptic spines was 
established early in evolution and appears to be roughly the 
same in all animal groups, but they have been studied best in 

mammals. Typical spines have a head and narrower neck 
region and project from the sides of dendrites [22, 26-30] (Fig. 
1). They broadly come in three basic shapes: (a) large, 
mushroom spines with enlarged head regions, (b) short, 
stubby spines without a clearly defined neck, and (c) thin 
spines with a relatively slender head and neck [22, 31, 32]. 
Stubby spines are devoid of a neck [33] and are prominent 
between postnatal development [34].  

Dendritic spines have been a source of fascination 
since long time and it is believed that these anatomical 
structures are involved in learning and memory. The capacity 
to learn and remember is undeniably critical for mammalian 
livelihood. It has long been assumed that changes in the 
structure and organization of synapses can be brought about 
by anatomical modifications of neurons [30, 35]. Dendritic 
spines, small protrusions found on the shaft of dendrites in 
the mammalian brain, are one aspect of cellular anatomy that 
may play a role in the expression of memory [35]. 

The majority of synapses in the brain are chemical 
synapses found on the synaptic specializations of dendrites. A 
chemical synapse consists of two membranes separated by a 
gap called the synaptic cleft. Neurotransmitters released from 
synaptic vesicles on the presynaptic side of the cleft diffuse 
across the cleft to activate receptors in the postsynaptic 
membrane. Because spines represent potential sites of 
postsynaptic excitatory input, an increase in their number can 
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translate into an increase in the number of excitatory 
synapses [30, 36]. Thus, changes in the density of spines can 
have a major impact on the amount of excitatory 
neurotransmission and processing of information in a 
particular brain region. In present review, we surveyed the 
morphological aspects of the dendritic spines that are used in 
neuronal classification. In addition to this we also discussed 
the changes in dendritic spine density due to external 
stimulus in the form of enriched environment, hormonal 
stress etc., that have effects on the learning and memory.  
 
MORPHOLOGICAL DIVERSITY OF DENDRITIC SPINES 
 
The morphology of a spine can change rapidly through 
activity-dependent and independent mechanisms [35, 37-40]. 
In addition, thin, hair-like protrusions called filopodia, which 
lack a bulbous head, are found on dendrites of developing 
neurons (Fig. 1). They are transient structures that might 
receive synaptic input and can develop into dendritic spines 
[41, 42].  The structures of spines are linked to high number 
of biochemical reactions taking place inside the spine [43]. 
Spine heads form an asymmetric excitatory synapse with a 
presynaptic axon [44]. Calcium dynamics in spines revealed a 
close relationship between spine morphology and function 
[40]. The spine–neck geometry is an important determinant 
of NMDA receptor-dependent calcium signaling in spine 
heads and dendritic shafts [45]. Furthermore, there is 
evidence that the induction of long-term potentiation (LTP) 
correlates with spine enlargement [46].  
The final determinant of spine morphology is the 
cytoskeleton. Spine heads contain actin filaments that interact 
with the plasma membrane and the PSD at their barbed ends 
(Fig. 1). In spine necks, actin filaments form long bundles (Fig. 
1) [47]. It was shown that actin polymerization occurs within 
seconds of LTP, underlying the enlargement of dendritic 
spines [48]. Thus, there is good evidence that, at least for 
hippocampal synapses, the reorganization of the actin 
cytoskeleton is tightly linked to synaptic efficacy [35, 49]. 
 

 
 
Fig 1. Structural and molecular organization of spine; 
Schematic drawings of spine morphologies based on the most 
common four-category classification 
 

DENDRITIC SPINES AND NEURONAL CLASSIFICATION 
 
Distribution of dendritic spines over the dendritic shaft have 
important role in the classification of neurons. The neurons 
are classified on the basis of the density of the dendritic spines 
present on the dendritic branches of the neuron. Neurons are 
sub-classified as highly spinous, moderately spinous and 
sparsely spinous on the basis of number of spines present in 
10µm or 25 µm distance of the dendritic shaft [3, 5] (Fig. 2). 

While describing medial cortex neurons in different 
reptiles various authors have taken the spine density as major 
criteria. In medial cortex of L. pityusensis Sparsely spinous 
horizontal neurons; Spinous pyramidal neurons; Spinous 
bitufted neurons; Small, sparsely spinous pyramidal neurons; 
Spinous multipolar neurons have been described [10]. In 
medial cortex of P. hispanica Heavily spiny granular 
monotufted, Heavily spiny bitufted neurons; Spiny bitufted 
neurons; Sparsely spiny bitufted neurons; Superficial 
multipolar neurons have been described [9]. Recent study in 
M. carinata and H. flaviviridis, describes the aspinous bipolar 
neurons; aspinous monotufted monopolar neurons; aspinous 
monotufted bipolar neurons; spinous monotufted monopolar 
neurons; spinous monotufted bipolar neurons; spinous 
bitufted bipolar neurons (heavily spinous bitufted bipolar 
neurons; spinous bitufted bipolar neurons; sparsely spinous 
bitufted bipolar neurons) and spinous multipolar neurons [3, 
4, 6].  
 

 
 
Fig. 2.  Photomicrographs showing the Golgi impregnated 
pyramidal and multipolar neurons of the hippocampal 
complex of chick brain. (A) heavily spinous pyramidal neuron, 
(B) moderately spinous pyramidal neuron, (C) sparsely 
spinous pyramidal neuron, (D) heavily spinous multipolar 
neuron, (E) moderately spinous multipolar neuron, (F) 
sparsely spinous multipolar neuron,   (Scale bar = 20µm) 
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In the visual wulst region of bird, Estrilda amandava 
Pyramidal neurons are classified as moderately spinous and 
sparsely spinous; Multipolar neurons as highly spinous, 
moderately spinous, and sparsely spinous; Local circuit 
neurons (small and medium sized) as aspinous; stellate, 
sparsely spinous neurons [17]. However, in Taenopygea 
guttata, the multipolar type neurons which were small and 
medium sized with few spines, has been described as Local 
circuit neurons [50]. Spine density is significantly different 
among interlaminar basal dendrites of Indian bat. Spine 
density on the apical and basal dendrites of atypical 
pyramidal neurons is reported to be relatively higher than of 
typical pyramidal neurons in Indian bat [21]. 
 
ADAPTIVE CHANGES AND SPINE FLUCTUATIONS 
 
Spine density in layer V pyramidal neurons of the primary 
visual cortex was found to be decreased in Golgi-stained 
material in mice when raised in total darkness from birth [51]. 
It is also shown that spine density can recover in some 
dendrites after few days of life in normal light conditions [52]. 
The spine density of dentate granule cells in the rat 
hippocampus, after an initial decrease due to entorhinal 
cortex lesions, subsequently returned to normal levels as a 
result of re-afferentation by sprouting of nearby axons [53]. 
These findings demonstrated the bidirectional nature of these 
morphological changes and indicated that the initial decrease 
in spine density was an adaptive response to changes in 
afferent input instead of a sign of injury to the postsynaptic 
neuron. 

It has been shown that, at early postnatal ages, 
dendritic spines of cortical neurons of rat brain are highly 
plastic and spine turnover decreases with age [54, 55]. The 
total spine number is found to be stable in adults over time 
due to comparable rates of spine elimination and their 
formation [56-58]. However, experience has tremendous 
effect on spine density and spine remodeling occurs in the 
adult brain due to induction of experience [58].  

 
NEURONAL REMODELING TO CHANGING ENVIRONMENT 
 
The adult brain possesses a remarkable ability to adapt and 
the minute structural changes in the brain due to the response 
to the environment can be noted in the form of neuronal 
replacement, dendritic remodeling (dendritic spine shapes) 
and synapse turnover (dendritic spine density) [59]. The 
brain is capable of rewiring after brain damage [53] and also 
able to grow and change as seen by spine turnover, dendritic 
branching, angiogenesis and glial cell proliferation during 
cumulated experience [60]. More specific physiological 
changes in synaptic connectivity have been recognized in 
relation to environmentally directed plasticity of the adult 
songbird brain, showing seasonally varying neurogenesis in 
restricted areas of the brain  [61-63]. 

Stress hormones have major effect on the function of 
the brain by changing the structure of neurons. The 
hippocampus is one of the most sensitive region of the brain 
which shows the effect of the stress hormones. Within the 
hippocampus, the input from the entorhinal cortex to the 
dentate gyrus is ramified by the connections between the 
dentate gyrus and the CA3 pyramidal neurons [64]. There is 

adaptive structural plasticity in dentate gyrus, where the new 
neurons produced continuously throughout adult life, and 
CA3 pyramidal cells show a reversible dendritic remodeling 
during hibernation and chronic stress [64-67]. This type of 
plasticity may be protective against permanent damage and 
the hippocampus undergoes a number of changes in response 
to acute and chronic stress to adapt new environmental 
conditions. 

The hippocampus involves replacement of neurons 
such as the subgranular layer of the dentate gyrus contains 
cells that have some properties of astrocytes which give rise 
to granule neurons [68, 69]. These cells appear as clusters in 
the inner part of the granule cell layer, where some of them 
will go on to differentiate into granule neurons within few 
days. There are many hormonal, neurochemical and 
behavioral modulators of neurogenesis in the dentate gyrus, 
including estradiol, antidepressants, IGF-1, voluntary exercise 
and hippocampal-dependent learning [70-72].  

Remodeling of dendrites and synapses in the 
hippocampus, amygdala and prefrontal cortex is also a type of 
structural plasticity. In hippocampus, chronic restraint stress 
CRS; daily for 21 days causes retraction and simplification of 
dendrites in the CA3 region of the hippocampus [64, 73]. Such 
dendritic reorganization is independent of adrenal size and 
found in both dominant and subordinate rats undergoing 
adaptation to psychosocial stress in the visible burrow system 
[74].  

In species of hibernating mammals, dendritic 
remodeling is a reversible process and occurs within hours of 
the onset of hibernation and it is also reversible within hours 
of wakening of the animals from torpor [65-67, 75]. This 
shows that changes in dendrite length and branching are a 
form of structural plasticity not “damage” and the 
reorganization of the cytoskeleton is taking place rapidly and 
reversibly [59].  
 
ENVIRONMENTAL ENRICHMENT AND NEURONAL 
PLASTICITY 
 
Postischemic housing in an enriched environment 
significantly improves the functional outcome after 
permanent focal brain ischemia in the rat [76-78]. Different 
mechanisms may contribute to the environmental effects in 
the postischemic brain. Dendritic spines are the primary 
postsynaptic targets of excitatory glutamatergic synapses 
[79-81]. Dendritic spines, as bridges between axons and 
dendrites, were proposed as primary sites of synaptic 
plasticity [82]. The spine cytoskeleton consists of actin 
filaments, and it has been shown that the shape of spines can 
change rapidly [83, 84]. Spines are calcium compartments 
with a constantly changing ability to compartmentalize 
calcium [40, 85]. Housing intact animals in an enriched 
environment can increase dendritic branching and number of 
synapses and dendritic spines [86-89], whereas rearing 
animals in social isolation has the opposite effect [90, 91]. 
 
DENDRITIC SPINES IN LEARNING AND MEMORY 
 
Dendritic branching patterns and spine density determine 
which populations of afferent axons terminate upon a 
population of neurons and the relative weighting of each type 
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of input. The vast majority of synaptic inputs onto neurons are 
on dendrites or dendritic spines, and the amount of synaptic 
input, cells receive, varies with the amount of dendritic 
surface available [29]. Most of the excitatory synapses are on 
dendritic spines, and changes in the number of dendritic 
spines are associated with experiences like learning or 
environmental complexity [92-95]. Thus, changes in dendritic 
morphology in the form of spine density are reliably 
associated with functional alterations induced by 
neuroendocrine changes [96-99]. 

There are numerous evidences in literature that 
behavioral training can alter different aspects of dendritic 
anatomy, such as length and branching of dendrites, dendritic 
spine density [92, 100]. There is a relationship between the 
presence of dendritic spines and the formation and 
expression of new memories due to new experiences in the 
life. 

Environmental complexity can alter the presence of 
dendritic spines and these complex experiences can affect 
learning ability on a variety of tasks [101-103]. Moreover, 
animals exposed to the complex environment showed faster 
acquisition in the water maze task [102, 104] and spine 
density analysis showed that the enriched animals possessed 
a higher density of dendritic spines on pyramidal cells in the 
CA1 region of the hippocampus. Similarly, Rampon et al. [103] 
reported a 20% increase in hippocampal dendritic spine 
density as well as enhanced performance on both object 
recognition and fear conditioning tasks following 
environmental enrichment. These results suggest that 
experience leading to increased spine density can also 
improve new learning. It should be noted that enrichment 
also induces changes in spine number in cortical regions [87].  
 
CONCLUSIONS 
 
A hundred years after Ramon y Cajal, the relationship 
between structure and function in neurons are still being 
discovered. The dendritic spine morphology have major role 
in neuronal classification in various animal groups [3, 4, 6, 9, 
10, 17, 18, 50]. The pattern of dendritic arborization is clearly 
related to connectivity. Similarly, the synaptic specializations 
extended by dendrites contribute significantly to 
connectivity. They allow thin dendrites to reach multiple 
axons such that larger numbers of synapses interdigitate in a 
relatively small brain volume [105]. The enormous diversity 
in the structure, composition, and plasticity of dendrites and 
their synaptic specializations suggests that the functional 
contributions of these structures to mind and brain are 
enormously diverse. 

Hormonal influences in the form of stress may also be 
considered along with the effects of experience in 
understanding how the brain adapts to challenges. Stress 
affects brain circuits in ways that promote adaptive plasticity 
by remodeling dendrites. Although repeated stress can cause 
deleterious effects on the brain neurons, but the primary role 
of the stress response is to promote adaptation [106].  

There are individual differences in the adaptive 
management in response to stress, based upon the individual 
experiences, early in life and in adult life. Early life 
experiences, positive or negative, in school, at work or in 
family relationships, have greater role in terms of how an 

individual reacts to new situations [107]. Depression and 
anxiety are a natural reaction to major life events and when 
the individual fails to “bounce back”, they need treatment. 
Most of these effects are seen on brain structure and function 
[108-111].  

Throughout the life span, the external environment 
and internal body conditions can modify dendritic form and 
other aspects of neural circuitry [93]. How changes in spine 
density would alter processes involved in learning and 
memory remains to be undetermined question for future 
researchers [112]. The presence of spines may enhance 
synaptic efficacy and thereby enhances the excitability of the 
network involved in the learning process. Thus, learning is not 
necessarily dependent on spine density changes, but rather 
changes in the presence of dendritic spines provide 
anatomical support for the processing of novel environmental 
information that will be helpful in memory formation. 
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