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SUMMARY Interleukin-5 (IL-5) involves in the development of airway inflammation and hyperresponsiveness 
through activation of eosinophils.  Thus, inhibition of IL-5 expression seems to be an attractive approach for asthma 
therapy.  In this study, an antisense IL-5 gene transferred by recombinant adeno-associated virus (asIL-5) was 
constructed to transfect murine allergic asthma model.  Our results showed that asIL-5 efficiently inhibited the IL-5 
mRNA expression and significantly attenuated the inflammation in lung tissues.  Significant decreasing of eosino-
phils and inflammatory cells were found in peripheral blood and bronchoalveolar lavage fluid (BALF). In addition, 
significant inhibition of airway hyperresponsiveness (AHR) was also found in the mice treated with asIL-5.  These 
observations demonstrate that antisense oligonucleotid against IL-5 delivered by adeno-associated virus system is 
possibly an efficacious therapeutic strategy for allergic asthma and other eosinophil-related disorders. 
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Allergic asthma is a disease characterized by 
elevated levels of allergen-specific immunoglobulin 
E, chronic airway inflammation, reversible airway 
obstruction, and airway hyperresponsiveness (AHR) 
to various broncho-constrictive stimuli.1–3 Clinical 
and experimental studies have shown strong correla-
tion between the presence of eosinophils and their 
products and airway hyper-reactivity.4  Study results 
have demonstrated that the airway inflammation is 
the major contributing factor to pathogenesis and 
pathobiology of allergic asthma, the levels of airway 
inflammation highly correlate with the clinical 
symptoms and degree of airway obstruction and air-
way hyperresponsiveness (AHR).5-7 It is now widely 
recognized that eosinophils are the major cell types 
that play a very important role in the generation of 
the asthma inflammation. The levels of eosinophils 
and their inflammatory products in the lung well 

correlate with disease severity.7  
 

At present, interleukin (IL-5) is thought to 
be a major chemokine of eosinophils. IL-5 has the 
capability of enhancing the differentiation, activation, 
expansion, mobilization, and in situ survival of 
eosinophils.8-10 Therefore, blocking or depleting IL-5 
from asthmatic patients will result in both allergic 
inflammation and symptom remission. In fact, a few 
lines of investigations have shown that passive ad-
ministration of anti-IL-5 monoclonal antibodies or 
experiment vaccines against IL-5 not only inhibited 
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recruitment of eosinophils from the bone marrow 
into the targeted organs, but also attenuated allergic 
inflammation and clinical symptoms.11-13 In addition, 
pharmacological modulation of gene expression has 
been though to be potential approaches for treatment 
of allergic diseases. Manipulation of gene expression 
in mRNA level is more efficient than in protein level 
because more than 5,000 copies of a protein are 
produced by one mRNA molecule.14 Therefore, in 
this study, we designed an antisense interleukin-5 
which was expressed in adeno-associated virus 
(AAV) system to test its capability of silencing the 
IL-5 expression in a murine model of allergic 
asthma. 

 
MATERIALS AND METHODS 

 
Construction and preparation of recombinant 
adeno-associated virus expressing antisense IL-5 

 
The recombinant adeno-associated virus ex-

pressing antisense IL-5 (rAAV-asIL-5) was con-
structed and prepared as previous reported.15  
Briefly, the murine antisense IL-5 gene was firstly 
cloned into pSNAV plasmid (Vector Gene Technol-
ogy Co. Ltd., China) and yielded a recombinant 
plasmid named as pSNAV-asIL-5. Thereafter, 
BHK-21 cells (ATCC, USA) were transfected with 
the plasmid pSNAV-asIL-5 by Lipofectamine re-
agent (Invitrogen, USA). After 24 hours, the cell 
lines expressing pSNAV-asIL-5 were obtained 
through G418 selection. These cell lines were plated 
onto a 15-cm-diameter dish and incubated at 37°C in 
5% CO2. When it reached 90% of the dish, the cells 
were infected by helper virus HSV-1, which con-
taining the necessary rep gene and cap gene for 
rAAV virus replication and packaging at a multiplic-
ity of infection. After 48 hours, the cells were re-
moved and a single-step gravity-flow column purifi-
cation method was carried out. The rAAV-asIL-5 
vectors were saved at -80°C for animal experiment. 
 
Animals 

 
Specific pathogen-free male BALB/c mice 

between 6 and 8 weeks of age were purchased from 
the Experimental Animal Center of Hainan Province, 
People’s Republic of China. The mice were housed 
in macrolon cages in a laminar flow cabinet and pro-
vided with ovalbumin (OVA)-free food and water ad 

libitum. Animals were handled and treated in accor-
dance with the guidelines of Dutch Committee on 
Animal Experimentations. Experiments were con-
ducted under a protocol approved by the Institutional 
Animal Care and Use Committee of Hainan Provin-
cial Key Laboratory of Tropical Medicine. 
 
Murine asthma model and therapeutic protocols 

 
To establish the mouse allergic asthma model, 

mice were sensitized to ovalbumin (OVA, 
Sigma-Aldrich, USA) by 2 intraperitoneal injections 
(7 days apart) of 100 μl alum-precipitated antigens 
composed of 10 μg OVA absorbed onto 2.25 mg 
alum (ImjectAlum; Pierce Biotechnology, Rockford, 
USA). Thereafter, the animals were exposed to 
aerosol challenge containing 1% OVA (1 mg/ml sa-
line) for 60 minutes/day. The aerosol challenge was 
performed in a Plexiglas exposure chamber coupled 
to a Pari LC Star nebulizer (particle size 2.5–3.1 μm; 
PARI Respiratory Equipment, Richmond, USA) 
driven by compressed air at a flow rate of 6 li-
ters/minute.  

 
To test the therapeutic anti-asthma effects, 

mice were randomly divided into four groups of 10 
mice each. Group 1 (asIL-5): mice were sensitized 
and challenged with OVA, 0.2 ml (1 x 1013 vector 
gemones [v.g.]/ml) rAAV-asIL-5 were administered 
via tail vein injection on the day of sensitization (day 
0) and the day of challenge (day 14).  Group 2 
(AAV): mice were sensitized and challenged with 
OVA, 0.2 ml (1 x 1013 v.g./ml) adeno-associated vi-
rus were administered via tail vein injection on the 
day of sensitization (day 0) and the day of challenge 
(day 14).  Group 3 (NS): mice were sensitized and 
challenged with OVA, 0.2 ml normal saline was ad-
ministered via tail vein injection on the day of sensi-
tization (day 0) and the day of challenge (day 14).  
Group 4 (naive): mice were not sensitized and chal-
lenged with OVA, 0.2 ml normal saline was admin-
istered via tail vein injection on the day of sensitiza-
tion (day 0) and the day of challenge (day 14). 
 
Real-time quantitative PCR 

 
The lungs of mice were homogenized with 

TRIZOL reagent (Invitrogen, Gaithersburg, USA) 
and the total RNA was extracted according to the 
manufacturer’s instruction. The total RNA was 
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treated with rDNase I for 30 minutes. cDNA synthe-
sis was performed with random hexamer primers. 
Quantitative real-time PCR was performed in a Mu-
ticolor Real-Time PCR Detection System (Bio-Rad, 
CA, USA). All reported mRNA levels were normal-
ized to the β-actin mRNA level. 
 
Lung histology 

 
For histological evaluation of lung tissues, 

lungs were removed and fixed in 10% phos-
phate-buffered formalin. The left lobe of each lung 
was embedded in paraffin, sectioned at 3~5 μm, and 
stained with hematoxylin and eosin. Cellular infil-
trates were assessed in five randomly selected fields 
with a microscope at 200x magnification. Groups 
were analyzed in a blind fashion as done previ-
ously.16, 17

 
Bronchoalveolar lavage 

 
At the end of the experiments, mice were 

sacrificed by CO2 asphyxiation, and samples of 
bronchoalveolar lavage fluid (BALF) and lung tissue 
were collected as previously described.16  Briefly, 
ten lungs per group were perfused through the pul-
monary artery and lavaged through the trachea three 
times with 1 ml of PBS. Total BALF cells were de-
termined using a hemacytometer. BALF cells were 
then spun onto slides by cytocentrifugation, then 
fixed and visualized with Hansel stain (Lide Labora-
tories, Florissant, Mo., USA). Differential cell counts 
were made on at least 400 cells using standard mor-
phological criteria.16, 17

 
Quantification of eosinophils 
 

Peripheral blood samples, lung tissues and 
BALF were collected at the end of the experiments. 
Carbol’s chromotrope-hematoxylin stain was used 
for the identification of eosinophils. Eosinophils in 
the peripheral blood, BALF, and lung tissues were 
identified based on morphological characteristics and 
quantified as previously described.16,17

 
Measurement of airway hyperresponsiveness 

 
Airway hyperresponsiveness (AHR) was as-

sessed by methacholine-induced airflow obstruction 
from conscious mice placed in a whole body 
plethysmograph (model PLY 3211, Buxco Electron-

ics, Troy, USA). Measurements of a dimensionless 
parameter known as the enhanced pause (Penh) were 
performed as previously described.18,19 Briefly, mice 
were placed in the plethysmograph chamber and ex-
posed to an aerosol of normal saline (NS) (baseline 
readings) and then to cumulative concentrations of 
β-methacholine ranging from 3 to 50 mg/ml. The 
aerosol was generated by an ultrasonic nebulizer and 
drawn through the chamber for 2 minutes. The inlet 
was then closed, and Penh readings were taken for 3 
minutes and averaged. The values from 10 normal 
mice (without sensitizing and aerosol challenging 
with OVA, no vaccine immunization) of the same 
age were used for the baseline data.  Values from 
the above-mentioned four experimental groups were 
reported as the percent increase over the baseline 
values from the normal mice at corresponding time 
points. 
 
Statistical analysis 
 

Data were expressed as mean ± standard de-
viation SD) and analyzed by one-way ANOVA and q 
test using SPSS 12.0. A p value less than 0.05 was 
considered statistically significant. 
 

RESULTS 
 
Inhibition of IL-5 mRNA expression in lung tis-
sues 

 
Compared with the non-sensitized mice (na-

ive), the IL-5 mRNA expression in the mice treated 
with only adeno-associated virus (AAV) or normal 
saline (NS) had 5.84 ± 1.13 and 5.12 ± 0.98-fold  
increase, respectively. However, IL-5 mRNA levels 
of mice treated with rAAV-asIL-5 (asIL-5) were sig-
nificantly decreased, about 1.02 ± 0.32-fold com-
pared with that found in the naive mice. More than 
4-fold reduction of IL-5 mRNA was found in mice 
treated with asIL-5 compared with those treated with 
AAV or NS (Fig. 1).  
 
Remission of inflammation in lung tissues 
 

Lung sections from the mice treated with 
asIL-5 (Fig. 2A) showed almost normal lung histol-
ogy compared with the naive mice (Fig. 2D), with 
only marginal perivascular and peribronchiolar lym-
phocytic infiltrates. In contrast, lung sections from 
mice treated with AAV (Fig. 2B) or NS (Fig. 2C) 
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showed significant airway inflammation with peri-
bronchiolar and perivascular infiltrates, consisting of 
lymphocytes, eosinophils and some neutrophils.  
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Fig. 1  Inhibition of IL-5 mRNA expression. Lung tis-
sues were collected and frozen in liquid nitro-
gen immediately.  The IL-5 mRNA level was 
analyzed by quantitative real-time PCR. IL-5 
mRNA level of non-sensitized mice (naive) was 
counted as 1 and those of other groups mice 
were relatively compared to naive mice. There 
was not significant difference between asIL-5 
and naive groups (p > 0.05). However, com-
pared with the AAV or NS group, the IL-5 RNA 
level in the asIL-5 group was significantly inhib-
ited (p < 0.001).

 
Decreasing of eosinophil infiltration 

 
The number of eosinophils in BALF (Fig. 3A) 

and peripheral blood (Fig. 3B) treated with asIL-5 
were found to be comparable to those in the naive 
mice. None any significant difference was shown 
between asIL-5-treated mice and naive mice. How-
ever, compared with the AAV-treated and NS- 
treated mice, eosinophils were significantly attenu-
ated in the asIL-5-treated mice (p < 0.001). 
 
Inhibition of AHR development 

 
AHR was measured with a whole-body 

plethysmograph by challenging with increasing con-
centrations of methacholine at different time points.  
Fig. 4 demonstrated the strand of AHR development.  
The mice treated with AVV or NS developed sig-
nificant AHR. However, mice treated with asIL-5 

 

A B 
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Fig. 2  Remission of inflammation. Lung tissues were fixed in formalin and stained with hematoxylin and eosin at 
the day of sacrifice. Compared with naive mice (D), lung tissues from mice treated with asIL-5 had only 
minimal inflammation (A); lung tissues from mice treated with AAV (B) and with NS (C) revealed significant 
inflammation, significant peribronchiolar mononuclear cell infiltrates consisting of lymphocytes, eosinophils, 
and some neutrophils. 200x magnification.  
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Fig. 3  Decreasing of eosinophil infiltration. Blood and BALF were collected at the end of experiment. Compared with 

AAV or NS group, the eosinophils of blood (A) or BALF (B) in asIL-5 group was significantly reduced (p < 
0.001). However, compared with naive group, the eosinophils of blood (A) or BALF (B) in asIL-5 group was 
not shown any difference (p > 0.05) 

showed dramatically reduced AHR, which were al-
most comparable to that found in the naive mice (Fig. 
4). 
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Fig. 4  Inhibition of AHR development. Reactivity to 

methacholine was measured by barometric 
plethysmography, and the data represent the 
percent increase in Penh over baseline values 
from naive mice at different concentrations of 
methacholine. Heightened reactivity was seen 
at all concentrations of methacholine in the 
AAV and NS mice, compared with that in asIL-5 
mice. *p < 0.05; **p < 0.01. 

 
DISCUSSION 

 
The development of the antisense approach 

started in the late 1970s after the discovery that the 
expression of a specific gene product could be inhib-
ited using a short complementary DNA sequence.20  
Since then, the antisense strategy has enjoyed expo-
nential gains in interest in the world. In 1998, the 
first antisense oligonucleotide, Vitravene™ 
(Fomivirsen), was approved for use against cy-
tomegalovirus-induced retinitis by local injection.21  
Antisense oligonucleotides have been used for a va-
riety of purposes, including target validation, gene 
function studies and as experimental therapy for dif-
ferent diseases. The antisense oligonucleotides have 
been used most frequently for cancer-related targets 
including oncogenes, signaling molecules and mu-
tant tumor suppressor genes.22-24 Besides, patho-
gen-associated and other disease-related gene prod-
ucts such as ICAM-1 and TNF-α (for Crohn’s dis-
ease and Rheumatoid Arthritis, respectively) have 
also been targeted.25,26

 
To date, there have been few specific an-

tagonists or molecular targets directed against eosi-
nophils. It is thus desirable to have other therapeutic 
targets. Several studies have demonstrated that the 

function of eosinophils is principally under the con-
trol of a subset of Th2 cell-derived cytokines includ-
ing IL-5, IL-3 and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF). Although each of 
these cytokines has the capability of regulating the 
survival, adhesion, priming and activation of termi-
nally differentiated eosinophils, IL-5 alone is capable 
of promoting the terminal differentiation of bone 
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marrow-derived eosinophil precursors into mature 
eosinophils.27 Furthermore, while IL-3 and GM-CSF 
can activate a broad spectrum of hematopoietic cell 
types, the effects of IL-5 are restricted to cells of the 
eosinophil/basophil lineage.28,29 Thus, blocking the 
activity of IL-5 seems the most specific way of tar-
geting the eosinophils, potentially leading to the 
highest therapeutic benefit with the smallest number 
of adverse consequences. In addition, several studies 
have demonstrated that the expression of IL-5 in the 
lung was inversely correlated with pulmonary dys-
function in asthma patients, and the level of expres-
sion was directly correlated with the number of 
eosinophils detected in asthmatic airways.30-32 Re-
ducing IL-5 levels also reduced AHR independently 
of its role in eosinophilia, probably through the ef-
fects of IL-5 on airway smooth muscle.33 At present, 
although some studies have shown that monoclonal 
antibody against IL-5 could reach satisfied anti- 
asthma effects,34 these therapeutic approaches exist 
many shortages. Treatment with monoclonal anti-
body is a kind of passive immunotherapy which 
needs complex manipulation and a long-term usage 
of the antibody in vitro, representing an expensive 
economic burden for asthma patients. Therefore, it is 
highly warranted to develop a novel approach for 
treatment of asthma. 

 
Gene therapy has shown its attractive future 

in cancer and other chronic or genetic refractory dis-
eases. Several viral vectors, such as lentivirus, ade-
novirus, rAAV and vesicular stomatitis virus, have 
been used for gene therapy.35 The rAAV vector, 
which has the capability of either integrating into the 
genome or remaining in the nucleus as a stable epi-
some, offers several theoretical advantages compared 
with other vectors, such as the lack of inflammatory 
response, the ability to infect the dividing and 
non-dividing cells, especially including T lympho-
cytes.36,37 In addition, the AAV is relatively safe in 
gene transport process, because AAV can not pro-
duce viral proteins that stimulate inflammatory reac-
tions, and not replicate inside cells which results in 
not any presence of a wild-type adenovirus.38,39 Fur-
thermore, the AAV is effective as a vector as it con-
tains sufficient capacities for the insertion of various 
exogenous genes.40 Therefore, it is possible for ex-
ogenous gene to produce a sustained and effective 
expression.  

 

Our current study results demonstrated that 
asIL-5 was capable of inducing therapeutic anti- 
asthma efficacies in the murine model of asthma.  
Treatment with antisense oligonucleotid against IL-5 
(asIL-5) significantly decreased expression of IL-5 
mRNA and reduced airway inflammation and AHR 
in the pulmonary compartments of mice sensitized 
and challenged with OVA. We thus supposed that it 
may be the reduction of IL-5 expression that reduced 
tissue infiltration of eosinophils and result in remis-
sion of inflammation and AHR. Compared with 
monoclonal antibodies and other currently used ap-
proaches, antisense oligonucleotide delivered by in-
travenous injection is easier and more economic.  
Therefore, our findings demonstrated that gene ther-
apy with atisense oligonucleotid against IL-5 could 
be a potential therapeutic approach to the treatment 
of allergic asthma and possibly other eosino-
phil-related disorders. 
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