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Viral diseases like foot-and-mouth disease (FMD), calf scour (CS), bovine viral diarrhea (BVD), infectious bovine 
rhinotracheitis (IBR) etc. affect the growth and milk production of cattle (Bos taurus) causing severe economic loss. 
Epitope-based vaccine designing have been evolved to provide a new strategy for therapeutic application of pathogen-
specific immunity in animals. Therefore, identification of major histocompatibility complex (MHC) binding peptides as 
potential T-cell epitopes is widely applied in peptide vaccine designing and immunotherapy. In this study, MetaMHCI tool 
was used with seven different algorithms to predict the potential T-cell epitopes for FMD, BVD, IBR and CS in cattle.  
A total of 54 protein sequences were filtered out from a total set of 6351 sequences of the pathogens causing the said 
diseases using bioinformatics approaches. These selected protein sequences were used as the key inputs for MetaMHCI tool 
to predict the epitopes for the BoLA-A11 MHC class I allele of B. taurus. Further, the epitopes were ranked based on a 
proposed principal component analysis based epitope score (PbES). The best epitope for each disease based on its 
predictability through maximum number of predictors and low PbES was modeled in PEP-FOLD server and docked with 
the BoLA-A11 protein for understanding the MHC-epitope interaction. Finally, a total of 78 epitopes were predicted, out of 
which 27 were for FMD, 25 for BVD, 12 for CS and 14 for IBR. These epitopes could be artificially synthesized and 
recommended to vaccinate the cattle for the considered diseases. Besides, the methodology adapted here could also be used 
to predict and analyze the epitopes for other microbial diseases of important animal species. 

Keywords: Foot-and-mouth disease, Calf scour, Bovine viral diarrhea, Infectious bovine rhinotracheitis, Major 
histocompatibility complex, Principal component analysis. 

 

The common viral diseases in cattle like foot-and-
mouth disease (FMD), calf scour (CS), bovine viral 
diarrhea (BVD), infectious bovine rhinotracheitis 
(IBR) etc. adversely affect the growth and milk 
production of cattle, in turn affecting the economy of 
the countries dependent on agriculture. FMD is a 
highly contagious viral infection in wild and domestic 
cloven-hoofed animals. The foot-and-mouth disease 

virus (FMDV) is classified as a member of the 
Aphthovirus genus and causes a drastic decrease in 
performance of production traits due to the formation of 
painful blisters in epithelial sites, primarily mouth and 
feet1. There are seven serotypes of FMDV (A, O, C, 
Asia1, SAT1, SAT2 and SAT3) exist in nature2

 and 
out of them, the serotype O is the most prevalent and 
found in many parts of the world3. 

Some of the FMD symptoms like lesions in nose 
or mouth resemble BVD, which often creates 
confusion between these two diseases. However, 
BVD is characterized by severe erosive lesions in 
oral and intestinal mucosa, diarrhea and death4 and is 
caused by a single-stranded RNA virus called bovine 
viral diarrhea virus (BVDV) which belongs to the 
Pestivirus genus of Flaviviridae family. BVDV is 
divided into two different genotypes (genotypes I 
and II), which are distinct from one another, but 
responsible for same disease5. Like BVD, CS is also 
caused by an RNA virus, which is double stranded 
and referred as bovine rotavirus (BRV) that belongs 
to the family Reoviridae. It causes infantile 
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gastroenteritis and results several deaths worldwide 
each year6. Similarly, infectious bovine rhinotracheitis 
(IBR) is another harmful cattle disease caused by 
herpesvirus infection and has diverse clinical 
manifestations. It is mainly known as respiratory tract 
disease, characterized by tracheitis, rhinitis and fever. 
The causal virus, bovine herpesvirus 1 (BHV-1) is 
easily transmitted and is distributed worldwide7. 
BHV-1 infection is also an important component of 
an upper respiratory tract infection referred to as 
shipping fever or bovine respiratory complex8. 

The vaccines are developed to configure the 
immune system to protect the body from a specific 
viral attack in future. Biologically, vaccine contains an 
agent resembling to a disease-causing pathogen, which 
is generally the weakened or heat-killed form of the 
pathogen. Generally, these agents bind with two types 
of major histocompatibility complex (MHC) molecules 
that are involved in the antigen presentation to T-Cell 
receptors. MHC class I molecules present endogenous 
antigens to CD8+ cytotoxic T-Cells, whereas MHC 
class II molecules present the exogenously-derived 
proteins to CD4+ helper T-Cells9. The cytotoxic T 
lymphocytes (CTLs) play a major role in cell-mediated 
immunity (CMI) that is vital for the defense against 
viral diseases, as these CTLs recognize the endogenous 
antigenic peptides presented by the MHC class I 
molecules10,11 and responsible for the immune 
elimination of intracellular pathogens like viruses12. 

Biologically experimental determination of these 
antigenic peptides is time-consuming and 
expensive13.To address such problems, computational 
vaccine designing through bioinformatics approaches 
is being adapted by using various strategies to design 
novel antigen-specific, epitope-based vaccines14. 
Thus, significant efforts have been made on the 
development of computational tools for the 
identification of MHC-binding peptides15. Due to 
diverse advantages of epitope based vaccines, 
nowadays epitope-based vaccine designing has 
become a prime interest in the field of modern 
computational biology. These conserved epitopes are 
used as vaccines with the expectation that it can 
protect against multiple pathogenic strains or species. 
On the other hand, specific epitopes are used for 
given infectious pathogen strain. However, the degree 
of conservancy of epitopes is vital in both the cases16. 

In cattle, the MHC class I molecules are potentially 
available for antigen presentation to CTLs. Data from 
several bovine lymphocyte antigen (BoLA) 

workshops have demonstrated the existence of more 
than 50 serologically defined MHC class I 
specificities17. However, many researchers have 
conducted computational experiments on the 
identification of antigenic peptides for binding to the 
BoLA-A11 molecules. Hegde et al.18 reported the 
amino acid sequence of nonapeptides with a motif for 
binding to BoLA class I A11 molecules. Similarly, 
Hegde and Srikumaran19 used computer simulation 
methods to search for potential CTL epitopes from 
BHV proteins for major BoLA class I alleles 
(including BoLA A11). Further, Hegde and 
Srikumaran20 also identified several antigenic 
peptides from polyprotein of BVD virus for BoLA-
A11, BoLA-A20, BoLA-HD1 and BoLA-HD6. 
Becker21 presented a computer analysis that predicts 
the availability of putative nonapeptides with amino 
acid motifs from FMDV for binding to BoLA class I 
A11 and A20 alleles. 

In the present study, the antigenic CD8+ cytotoxic 
T-Cell epitopes from the viral protein sequences for 
BoLA A11 MHC class I allele of B. taurus have been 
predicted using seven existing epitope predictors  
(four individual predictors and three meta-predictors). 
In addition, an index-based approach using principal 
component analysis (PCA) is proposed by taking into 
account the epitope scores obtained from all the 
existing predictors to screen the potential epitopes. 
Further, the proposed approach has been compared 
with the existing meta-predictors. Besides, the 3D 
structures of the best epitope for each disease have 
been modeled and docked with the BoLA A11 allele 
to analyze the epitope-MHC interaction. The 
predicted T-Cell epitopes are expected to contribute in 
the development of vaccine candidates for the major 
cattle diseases like FMD, BVD, IBR and CS. 
 

Materials and Methods 

Pathogen, diseases and antigenic proteins 

For the present study, FMD, CS, BVD and IBR 
diseases were considered on the basis of mode of 
infection, virulency and economic importance. All the 
protein sequences of different serotypes of the 
causative viruses were downloaded from the protein 
database of National Center for Biotechnology 
Information (NCBI) (http://www.ncbi.nlm.nih.gov). 
The total number of downloaded sequences was 6351 
from which 4623 were from FMDV, 1414 were from 
BVDV, 31 sequences from BHV and 283 were from 
BRV. Short sequences of length less than  
50 amino acids and the redundant sequences with 90% 
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identity were removed. Upon filtration, a total of  
54 sequences from all the viruses were selected for 
epitope prediction (Table 1). The selected virulent 
proteins along with the information on pathogens, 
corresponding serotypes, NCBI accessions and related 
references are listed in Supplementary Table 1  
and the corresponding fasta sequences are  
given in Supplementary Dataset 1 
(http://cabgrid.res.in/ijbb/Suppl/). 
 

MHC Class I allele of Bos taurus and homology analysis 

MHC class I molecules bind to the short antigenic 
peptides (8-11 aa) that are derived from the pathogen 
proteins at their antigen binding groove formed by α1 
and α2 domains of the MHC molecule. The antigenic 
peptides are presented by the cell surface of the MHC 
to the cytotoxic T-Cells (CTLs). Further, these 
peptides are recognized by T-Cell receptors  
(TCRs)22. Most of the reviewed online epitope 
prediction tools, including MetaMHCI predict 
epitopes for the MHC alleles of Homo sapiens, Mus 

musculus, Pan troglodytes and Macaca mulatta 

(Rhesus macaque). As such, there exists no provision 
in these tools to predict potential epitopes against the 
MHC alleles of B. taurus. 

Therefore, the closest MHC homologue of  
B. taurus was identified from the above-mentioned 
species. Hence, a proteome-specific BLAST search 
was performed for BoLA-A11 (accession 3PWU_A) 
with the proteomes of H. sapiens, M. musculus,  
P. troglodytes and M. mulatta, respectively. Then, the 
closest protein sequences were downloaded and 
subjected to multiple sequence alignment (MSA) 
along with BoLA-A11 of B. taurus. The MSA result 
was used as prior information for dendrogram 

generation by neighbor joining algorithm with 1000 
bootstrap replications in the interface of ClustalX2. 
The nearest neighbor of B. taurus was identified 
based on MHC alleles and selected for further 
analysis. Besides, the crystal structure of BoLA A11 
protein with PDB ID: 3PWU and the MHC class I 
allele of the closest species identified from MSA were 
downloaded from protein data bank (http://rcsb.org). 
These two structures were superimposed in discovery 
studio (DS) visualizer 3.5 and root mean square 
deviation (RMSD) was calculated and the 
superimposition at the antigen binding grooves of 
both the proteins was analyzed. 
 
Epitope prediction using MetaMHCI 

MetaMHCI is a server based web application that 
uses ensemble approaches to predict epitopes having 
binding affinity towards MHC class I proteins. The 
length of these epitopes vary from 8 to 11 amino acid 
residues23,24, however, the antigen peptides that bind 
to MHC class I molecules are approximately nine 
amino acid residues long25. MetaMHCI tool computes 
scores based on efficient prediction algorithms viz. 
ANN26, SMM27, NetMHC28, NetMHCpan29, 
Consensus30, PM15 and AvgTanh31 for MHC class I 
peptide binding prediction. ANN, SMM, NetMHC 
and NetMHCpan are the individual predictors, 
whereas Consensus, PM and AvgTanh are  
meta-predictors. Generally, the individual predictors 
are standalone models and meta-predictors need the 
results of individual predictors to give an ensemble 
prediction and also perform analysis of long protein 
sequences (max. 1000 sequence length). 

The sequences of all the 54 viral proteins listed in 
Supplementary Table 1 were provided as the sequence 
input to the MetaMHCI for 9 mer epitope prediction 
considering MHC of the species close to B. taurus. 
All the predictors (both individual and  
meta-predictors) were selected for computation of 
scores. Besides, the species found closer to B. taurus 
in the previous section was set as ‘MHC source 
species’ and the corresponding allele as ‘MHC allele’. 
The MetaMHCI predicted all the scores for each of 
the 9-mer fragments from each sequence. 
 
Index based selection of potential epitopes 

Different scores used in MetaMHCI designate 
different number of nonapeptides as epitopes and the 
ranks of the epitopes differ from method to method. 
Therefore, an index score was calculated based on 
principal component analysis (PCA) using all the 

Table 1—Details of pathogenic sequences considered for epitope 
prediction for different cattle viruses 

 
Disease Type No. of 

downloaded 
sequences 

No. of sequences 
after redundancy 

removal 

No. of 
sequences after 
removal of short 

sequences 
     
FMDV Asia 1 371 10 3 
FMDV SAT 1 280 46 2 
FMDV SAT 2 382 39 4 
FMDV SAT 3 72 22 3 
FMDV A 1258 87 6 
FMDV C 156 14 2 
FMDV O 2104 80 5 
BVD 1 1216 163 10 
BVD 2 198 36 4 
BHV 1 31 12 9 
BRV - 283 6 6 
Total  6351 515 54 
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predictors. This index score is expected to rank the 
epitopes in such a way that the high ranked epitopes 
are those, which are predicted through maximum 
number of predictors. Initially, the scores of 
individual predictors and meta-predictors obtained 
from MetaMHCI were used to compute a correlation 
matrix. This correlation matrix was further used to 
generate the heat map for graphically visualizing the 
extent of correlation between the considered 
predictors. Upon confirmation of higher degree of 
correlation between the individual predictors and 
meta-predictors, these correlated predictors were 
transformed to uncorrelated variables called principal 
components (PC). Then, the PC scores were 
computed from the principal components using SPSS 
v16.0. A weighted PC score called PCA based epitope 
score (PbES) was computed by considering the eigen 
values of the PCs as weights. The PbES is computed 
as shown below: 
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where λi is the ith eigen value, fi is the i
th
 PC score and p 

is the total number of PCs. Further, the correlation 
between PbES and the score of existing predictors were 
computed and based on which the tendency of PbES 
(increasing or decreasing) for the good binders was 
decided. Since PbES is also a meta-predictor, it was 
compared with the other meta-predictors by 
considering the highest ranked epitopes predicted 
through the individual predictors. The meta-predictor 
scores of top 10, 20, 30 and 40 epitopes were analyzed 
and compared with those of individual predictors 
separately for all the considered diseases. One potential 
epitope for each disease was selected based on its 
predictability through maximum number of predictors 
and the PbES score. Further, the selected epitopes were 
considered for the epitope-MHC interaction analysis.  
 
Prediction of epitope structures 

The tertiary structures of the best epitopes selected 
for each disease were predicted using PEP-FOLD 
server, which adopts a de novo approach to predict 
3D peptide structures from sequence information 
based on ab initio protein structure modeling. This 
server is more efficient than other prediction servers 
for ab initio structure prediction, because it can 

predict the structure of peptide size ranging from 9 to 
25 residues32. The top five results for each 
submitted epitope obtained by PEP-FOLD server 
were validated by PROCHECK of SAVES server33 
and the structures were further refined by Modloop 
Server34 and then revalidated by SAVES. This process 
was repeated till the final structures with an 
acceptable Ramachandran plot35 were obtained. The 
final structures were then energy minimized through 
YASARA energy minimization server (http://www. 
yasara. org/minimizationserver.htm). 
 

MHC-Epitope interaction analysis 

In the downloaded 3D structure of BoLA-A11 of 
B. taurus (PDB ID 3PWU), one CTL epitope from 
rinderpest virus was found inside its antigen binding 
groove. From the analysis of such interaction, active 
residues of the antigen binding groove were identified 
as a priori information (Supplementary Fig. 1; 
http://cabgrid.res.in/ijbb/Suppl/) to perform docking 
of potential epitopes with BoLA-A11. The CTL 
epitope from rinderpest virus, water molecules and 
other hetero atoms were removed from the structure 
and then the structure was minimized using YASARA 
energy minimization server. Further, the energy 
minimized selected epitopes for all the four diseases 
were docked separately with BoLA-A11 protein using 
the pre-identified binding site information. 

The docking was performed using the PatchDock 
server (http://bioinfo3d.cs.tau.ac.il/PatchDock/). Patch 
Dock is an efficient algorithm used for bio-molecular 
docking i.e. protein-protein, protein-peptide, protein-
DNA and protein-drug molecules. It results a list of 
potential complexes sorted by shape complementarity 
criteria36, 37. Further, the top 100 results of PatchDock 
were refined using FireDock server (http://bioinfo3d. 
cs.tau.ac.il/FireDock/) that addresses the refinement 
problem of protein-protein docking solutions by 
targeting the problem of flexibility and scoring of 
solutions produced by fast rigid-body docking 
algorithms. Given a maximum of 1000 potential 
docking candidates, FireDock refines and scores them 
according to an energy function38. 

From the result of FireDock, top ten solutions 
based on the global energy were downloaded for all 
the four diseases. These solutions were visualized in 
DS visualizer 3.5 and the interaction between the 
epitope and MHC was analyzed by identifying the 
intermolecular hydrogen bond (H-Bond) and a Van-
der-Waals interaction (Bumps)39. The amino acid 
residues participating in the MHC-Epitope interaction 
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from the top ten solutions were also identified and the 
best solutions were considered based on global energy 
of the solution, total number of interaction and 
number of receptor residues participated in the 
reference model 3PWU for each of the four diseases. 
 

Results 

A total of 54 antigenic proteins considered in this 
study for epitope prediction mostly belong to the 
categories of capsid proteins, glycoproteins, 
polyproteins, polymerases, proteases, DNA packaging 
and tegument proteins etc. These proteins are 
evidenced to be related with FMD, CS, BVD and IBR 
from the citations given in Supplementary Table 1. 

From the result of proteome-specific BLAST 
search for BoLA-A11 (3PWU_A) with the proteomes 
of considered organisms, 2 proteins of H. sapiens i.e., 
MHC class I antigen and HLA B7 (CAX3389.1 and 
3VCL_A), 2 proteins of M. musculus i.e., MHC class 
I antigen precursor and H-2Kd (AAT06794.1 and 
2FWO_A), one MHC class I antigen protein of  
P. troglodytes (ABG02214.1) and one Hb2m protein of 
M. mulatta (3JTS_A) were obtained. The result of 
MSA based phylogenetic analysis revealed H-2Kd of 
M. musculus as the closest homologue of BoLA-A11 
of B. taurus in terms of MHC alleles (Fig. 1) with 
sequence identity of 74.9% and similarity of 84.4%. 
The result of structural super-imposition of BoLA-A11 
and H-2Kd also revealed that both the proteins were 
closely related with each other. An RMSD of 1.888 Å 
was found between the structures of BoLA-A11 and  
H-2Kd proteins with a negligible variation in the 
antigen binding-groove (Fig. 2). Hence, the epitope 
prediction was done against H-2Kd of M. musculus as 
a proxy for the BoLA-A11 of B. taurus in MetaMHCI. 

For each of the nonapeptides, fragmented from the 
antigenic protein sequences through a sliding window 
of length 9, different prediction scores were obtained 
using the predictors of MetaMHCI tool. The 

thresholds are reported for four individual predictors 
and one meta-predictor (Consensus). The threshold 
for ANN, SMM, NetMHC and NetMHCpan is less 
than 500, whereas for Consensus meta-predictor, it is 
greater than 0.9 (http://www.biokdd.fudan.edu.cn/ 
Service/MetaMHCI/help.html). The total number of 
nonameric fragments scored were 43888 
(Supplementary Dataset 2; http://cabgrid.res. 
in/ijbb/Suppl/), of which a total number of  
78 nonapeptides (Supplementary Table 2; 
http://cabgrid.res.in/ijbb/Suppl/) were found to satisfy 
the thresholds of all five methods and a total of  
4350 nonapeptides (including 78 nonapeptides of 
Supplementary Dataset 3; http://cabgrid.res.in/ 
ijbb/Suppl/) satisfied the threshold score of at least 
one method. 

The correlations obtained among the scores of  
4 individual predictors and 3 meta-predictors are 
presented in the form of heat maps for four diseases in 
Fig. 3. It was observed from the Fig. 3 that there 
existed high degree of correlation between the 
predictors (the dark gray color represents highest 
correlation and white color represents lowest 
correlation). The correlation between PbES and the 
scores of individual predictor is presented in Table 2. 
From both Fig. 3 and Table 2, it was inferred that PbES 
was correlated with four individual predictors, as well 
as with the meta-predictors. However, the nature of 
linear relationship was positive in case of individual 
predictors and negative in case of meta-predictors. 

 
 
Fig. 1—Phylogenetic tree showing M. muscullus (2FWO_A) as 
the closest homologue of B. taurus (3PWU_A) 

 
 
Fig. 2—Structural superimposition of BoLA A11 with H-2Kd [It 
shows very less RMSD (1.888A0) implying that these two 
proteins are structurally very similar]  
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The average number of epitopes predicted by each 
meta-predictor (including PbES) appearing in the top 10, 
20, 30 and 40 results of individual predictors (ANN, 
SMM, NetMHC and NetMHCpan) for each disease are 
graphically shown in Fig. 4a-d. Each cell value in Fig. 4a 
indicates the average number of epitopes computed from 
intersections of top ten meta-predictor results with that 
of four individual predictors separately. Similarly, the 
averages are presented in Fig. 4b-d for top 20, 30 and 40 
results of each meta-predictor, respectively. From  
Fig. 4a, it was observed that out of top 10 epitopes 
predicted by the individual predictors, the average 
number of common epitopes predicted through (i) PbES 
and PM were equal in case of three diseases, except in 
IBR, (ii) PbES was more than Consensus in case of 
BVD and IBR, and (iii) PbES was more than AvgTanh 
in case of three diseases, but slightly less in case of CS. 

Figure 4b shows that out of top 20 epitopes 
predicted by the individual predictors, the average 

number of common epitopes predicted through  
(i) PbES and PM were equal in case of all the diseases, ii) 
PbES and Consensus were equal in three diseases, but 
Consensus was slightly more in BVD, and (iii) PbES was 
greater than or equal to AvgTanh in all diseases. From 
Fig. 4c, it was observed that out of top 30 epitopes 
predicted by the individual predictors, the average number 
of common epitopes predicted through PbES were greater 
than or equal to PM, Consensus and AvgTanh in all the 
diseases. Out of the top 40 epitopes ( Fig. 4d) predicted by 
the individual predictors, the average number of common 
epitopes predicted through PbES, PM, Consensus and 
AvgTanh were equal in case FMDV and in all other 
diseases number of epitopes predicted through PbES were 
more than that of all other meta-predictors. 

The potential epitopes for each disease selected for 
the epitope-MHC interaction analysis based on their 
predictability through maximum number of predictors 
and the PbES score were KYSSAKHSL from polyprotein 

Table 2—Correlation of PbES with individual and meta- predictors under different disease categories 
 

Individual predictors Meta predictors 

Disease ANN SMM NetMHC NetMHCpan Consensus PM AvgTanh 

FMD 0.861438 0.449872 0.857638 0.8301731 -0.80712 -0.88794 -0.9504 
BVD 0.896585 0.429393 0.868535 0.8337876 -0.8053 -0.89561 -0.9546 
IBR 0.880181 0.419838 0.863575 0.8382829 -0.79673 -0.87968 -0.95493 
CS 0.901708 0.422924 0.875518 0.8372867 -0.79504 -0.8733 -0.95608 

 
 

Fig. 3—Heat maps showing the correlations among the scores of 4 individual predictors and 3 meta-predictors [The dark color shows 
high correlation, whereas the light color shows low correlation] 
 

 
 

Fig. 4—Ggraphical representation of the average number of epitopes predicted by each meta-predictor (including PbES) that are 
appearing in the top 10(5a), 20(5b), 30(5c) and 40(5d) epitopes predicted by individual predictors 
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(CAB62902.1: 808~816) for FMD, IYNNQISTI from 
polyprotein (AFI81915.1: 3255~3263) for BVD, 
IYYSSNSEL from Dsrna-dependent polymerase, Vp1 
(4AU6_E: 32~40) for CS and SYIQIGNHL from capsid 
triplex subunit 1 (NP_045320.1:9~17) for IBR. Top five 
structures for these submitted epitope sequences were 
obtained from the results of PEP-FOLD server. Table 3 
presents the final Ramachandran plot scores of the loop 
refined structures with initial and minimum 
global energies. The energy minimized structures of all 
the four epitopes are presented in Fig. 5. The epitope 
structure for FMD was found helical, whereas others 
were found coiled. 

Though few residues were found in the outlier 
region of the Ramachandran plot before loop 
refinement, all residues were observed in the core 
region for all the epitopes after loop refinement. 
Analysis of tertiary structure of BoLA A11 MHC allele 
of B. taurus (3PWU) revealed its interaction with one 
CTL epitope from rinderpest virus (Supplementary  
Fig. 1). The interacting residues observed in 
Supplementary Fig. 1 were used as a priori information 
for docking. The initial energy for BoLA-A11 (3PWU) 
was -185880.6 kJ/mol, but the final energy  
became -233893.7 KJ/mol (Supplementary Fig. 2; 
http://cabgrid.res.in:8080/ ijbb/Suppl/) after 
minimization. The 100 best results obtained from patch 

dock server, refined through Firedock server were 
found arranged based on the global energy in the result 
page. The interactions of 10 best Firedock results for 
each docked epitope are given in the Supplementary 
Table 3 (http://cabgrid.res.in/ijbb/Suppl/). Further, the 
analysis of docking solutions for 4 diseases revealed 
ten different amino acid residues of BoLA-A11 those 
participated in at least one solution from each of the 
four diseases (Table 4). The interacting residues of one 
selected Firedock solution for each epitope are 
presented in Table 5 and three- dimensional view of the 
binding of epitopes in MHC binding groove is shown 
in Fig. 6. All the epitopes were found half-buried in the 
MHC binding groove of BoLA-A11. 

Table 3—Best epitope identified for each disease with sequence, number of methods predicted the epitope, PbES, results of 
Ramachandran plot for the loop refined structures, initial and final global energies and type of secondary structure 
 

Ramachandran plot Global energy 

Disease 
Epitope 

sequence 

No. of methods 
where epitope 

appeared in top 10 
results 

PbES 
Core (%) 

Allowed (%)/ 
Generously 

allowed (%)/ 
Disallowed (%) 

Initial  
(kJ/mol) 

Final 
(kJ/mol) 

Secondary 
structure 

         

FMD KYSSAKHSL 6/8 -4.69165 100 Nil -3339.6 -5390.7 Helix 
BVD IYNNQISTI 6/8 -4.66919 100 Nil -2476.2 -4146.6 Coil 
IBR SYIQIGNHL 8/8 -4.86339 100 Nil -2407.6 -3734.7 Coil 
CS IYYSSNSEL 7/8 -4.85508 100 Nil -2927.5 -3806.4 Coil 

Table 4—Number of residues of BoLA A11 taking part in epitope-
MHC interaction in the four diseases of cattle 
 
Residues FMD BVD IBR CS Total 

ARG162 2 3 4 5 14 
TYR98 3 2 3 6 14 
ARG154 2 1 7 2 12 
ARG154 2 1 7 2 12 
GLN155 2 3 4 3 12 
GLU96 2 1 2 6 11 
TYR8 3 2 2 2 9 
THR69 2 4 2 1 9 
GLU151 1 3 2 1 7 
ASP68 1 1 2 2 6 

 
 

Fig. 5—Eenergy minimized structures of best epitopes for FMD, BVD, IBR and CS diseases of cattle 
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Table 5—Interacting residues and global energies of the selected Firedock solutions for the four diseases 
 

Disease Interacting 
MHC residue 

Interacting 
MHC atom* 

Interacting 
epitope residue 

Interacting 
epitope atom* 

No. of FireDock 
solutions 

No. of total 
interactions 

No. of reference 
residues involved 

Global 
energy 

IBR TYR8 OH LEU9 O 3 
IBR TYR8 OH LEU9 OXT 3 
IBR ASN76 ND2 SER1 O 3 
IBR TYR98 OH LEU9 O 3 
IBR ARG154 NE GLN4 OE1 3 
IBR ASN76 OD1 SER1 N 3 
IBR GLU151 OE1 GLN4 N 3 
IBR GLN155 OE1 GLN4 NE2 3 
IBR ASP68 OD2 HIS8 ND1 3 

9 2 -46.48 

CS ASN62 ND2 TYR2 OH 3 
CS GLN155 NE2 TYR3 OH 3 
CS ARG162 NE TYR2 O 3 
CS ARG162 NE TYR3 O 3 
CS ARG162 NH1 TYR3 O 3 
CS ARG162 NH1 GLU8 OE2 3 
CS ARG162 NH2 TYR3 O 3 
CS ARG169 NH1 LEU9 O 3 
CS ARG169 NH1 LEU9 OXT 3 
CS TYR8 OH ILE1 N 3 
CS TYR98 OH ILE1 N 3 
CS ASN62 OD1 TYR2 OH 3 
CS GLN155 OE1 TYR3 OH 3 
CS GLU165 OE2 SER7 N 3 
CS GLU165 OE1 GLU8 N 3 
CS TYR158 CD1 TYR2 O 3 

16 2 -56.50 

BVD ARG74 NH1 THR8 O 7 
BVD ARG74 NH2 THR8 O 7 
BVD ARG74 NH2 ILE9 O 7 
BVD ARG74 NH2 ILE9 OXT 7 
BVD THR79 OG1 GLN5 O 7 
BVD TYR122 OH ASN3 OD1 7 
BVD THR142 OG1 ASN3 OD1 7 
BVD LYS145 NZ TYR2 O 7 
BVD LYS145 NZ ASN3 O 7 
BVD TRP146 NE1 TYR2 O 7 
BVD TYR83 OH ASN4 N 7 
BVD ALA75 O SER7 OG 7 

12 4 -29.00 

FMD TYR6 OH LEU9 O 8 
FMD TYR6 OH LEU9 OXT 8 
FMD ARG61 NE HIS7 O 8 
FMD THR69 OG1 SER4 OG 8 
FMD TYR158 OH LEU9 OXT 8 
FMD ARG162 NE LYS6 O 8 
FMD ARG162 NE SER8 O 8 
FMD ARG162 NH2 LYS6 O 8 
FMD ARG162 NH2 HIS7 O 8 
FMD ILE65 O SER4 OG 8 
FMD THR69 OG1 SER4 OG 8 

11 2 -20.81 

FMD, foot and mouth disease; CS, calf scour; BVD, bovine viral diarrhea; IBR, infectious bovine rhinotracheitis 
*The first character is the chemical symbol of the atom (usually C, N or O), the second character is the remoteness indicator and the third 
character is the branch designator. 
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Discussion 
FMD, CS, BVD and IBR are the most important 

viral diseases, which cause low milk production and 
reduced growth of cattle resulting high economic loss. 
Thus, an attempt was made to identify potential 
epitopes and study their interaction with MHC alleles 
in B. taurus. For this, all the pathogenic sequences 
were downloaded and the sequences with more than 
90% identity were removed due to the fact that almost 
all epitopes from identical sequences will be identical. 
The total number of sequences selected for epitope 
prediction belongs to different categories that are 
found to be related with the diseases considered under 
the present study (Supplementary Table 1). 

The MetaMHCI is a widely used web-server that 
uses ensemble approaches to predict epitopes having 
binding affinity towards MHC class I proteins of  
H. sapiens, M. musculus, P. troglodytes and  

R. macaque. Thus, to predict epitopes for B. taurus, 
identification of most closely related species of  
B. taurus among the species listed in MetaMHCI was 
necessary. Accordingly, the closest homologue of  
B. taurus was identified as M. musculus through 
phylogenetic analysis (Fig. 1). Besides, the structure 
comparison between MHC class I proteins of  
B. taurus and M. musculus revealed an RMSD of less 
than 2Ao, confirming the high structural similarity 
between the MHC proteins of these two species. Also, 
a number of studies in relation to FMD40, BVD41 and 
IBR42 were conducted on mouse species in the past. 
The rotavirus that causes CS was first isolated and 
characterized from mice43. This indicates the 
proximity of the mouse species with the cattle species. 
In the present study, MHC of cattle showed similarity 
with many MHC class I proteins of mouse, as evident 
from the results of BLAST. The first hit of BLAST 
was related to the “H-2Dr MHC allele”, which is not 
available in MetaMHCI tool. However, the next 
known MHC allele available in MetaMHCI was 
found to be H-2Kd. Though the query coverage of  

H-2Kd was 3% lower than that of H-2Dr, the 
percentage of identity of former over latter was 1% 
higher. Hence, M. musculus was considered here as 
the source species and H-2Kd as the MHC allele in 
MetaMHCI tool for the prediction of probable 
epitopes. 

MetaMHCI database includes seven types of 
predictors (both individual and meta-predictors) based 
on different algorithms. These predictors were found 
to be correlated with each other (Fig. 3), when 
analyzed using the dataset considered under the 
present study. Since different predictors ranked 
different epitopes based on their threshold scores and 
are correlated with each other, the proposed PbES that 
is a principal components analysis45 based index score 
was used to rank the epitopes. The PbES was found to 
be positively correlated with all the individual 
predictors, whereas negatively correlated with all the 
Meta-predictors. The epitopes with low individual 
predictor scores were referred as good binders in 
MetaMHCI44. Hence a low PbES (proposed in this 
study) can be preferred for selecting the good binders. 

The comparative analysis between the  
meta-predictors including PbES using the top 10, 20, 
30 and 40 results showed that the good binders 
predicted through the individual predictors appeared 
in the top results of PbES. Probably, the PbES 
performed well due to its capability to capture the 
correlation structure existing among individual and 
meta-predictors and its nature as a weighted index, 
where eigen values are used as weights. As PbES is 
able to capture the good binders on a consensus basis, 
it can be used as a complementary procedure to the 
existing scoring methods for the selection of good 
binders. 

The MetaMHCI server considers the epitopes as 
good binders when they score less than 500 for ANN, 
SMM, NetMHC and NetMHCPan. Besides, an 
epitope with score less than 0.9 obtained from 
Consensus meta-predictor is considered as a good 

 
 
Fig. 6—Three-dimensional view of epitope-MHC interaction for FMD, BVD, IBR and CS diseases of cattle. The epitopes are bound to 
binding groove of the BoLA A11 MHC allele of cattle 
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binder44 in MetaMHCI server. However, the 
thresholds are not available for the rest of the meta-
predictors. As 78 nonapeptides were found to satisfy 
the available thresholds, these were considered as 
strong binders. However, the nonapeptides satisfying 
at least one of these thresholds should not be rejected, 
but can be considered as weak binders. Further, the 
nomenclature of the epitopes as strong or weak 
binders can be decided by looking at their PbES with 
low or high values, respectively. 

The structures of best epitopes for FMD, BVD, CS 
and IBR were predicted using ab initio method. The 
three-dimensional (3D) confirmation of the epitope 
considered for FMD was found to be a helix, while 
the epitopes considered for rest of the diseases were 
the coils. The loop refinement and validation results 
(Table 3) confirmed the 3D arrangement of the amino 
acids in the structures with correct Φ and Ψ angles. In 
Ramachandran plot, above 90% residues were found 
in the favored region with no residue in disallowed 
region for all the structures, signifying the reliability 
of the predicted structures. As the epitope structures 
were found closer to accuracy, the interaction analysis 
was carried out with these refined structures. 

From the PatchDock result, 100 best solutions 
(docked poses of epitopes and MHC) were taken and 
refined with the Firedock server. The analysis of top 
ten solutions obtained from Firedock revealed that 
maximum of solutions showed good number of 
interactions with minimum global energies (negative), 
implying the stability of the solutions. However, out 
of the ten selected solutions, the best solution was 
chosen, based on global energy, number of 
interactions and number of reference residues 
involved in the interactions. As the reference residues 
were identified from 3PWU protein model  
(a crystallographic structure), their presence in the 
theoretical models was taken into consideration in the 
selection of a best solution. From the best solutions, it 
was found that the docked epitopes were well-fitted in 
the MHC binding groove of the BoLA A11 protein 
and hence were expected to be good binders. Thus, 
their recognition by the CTLs would help enable the 
immune elimination of FMDV, BVDV, BRV and 
BHV form the cattle. Similarly, for rest of the 
predicted epitopes, the docking studies could be 
followed to analyze and validate their interaction with 
the class I MHC molecule of B. taurus. In addition, 
ten amino acids of BoLA A11 protein were found to 
participate in at least one docking solution from each 

of the four diseases (Table 4). Thus, these amino acids 
might be the crucial residues of BoLA A11 that are 
expected to play an important role in antigen 
presentation. 
 

Conclusion 
Epitope-based vaccine designing has recently been 

attracting growing interest in the field of modern 
computational biology. However, the experimental 
discovery of candidate epitopes is expensive in terms 
of time and money. Thus, in this study, computational 
prediction of CD8+ T-Cell epitopes was done for 
vaccine development against the four major viral 
diseases i.e. FMD, CS, BVD and IBR. A total of 78 
epitopes were identified and out of which 27 were for 
FMD, 25 for BVD, 12 for CS and 14 were for IBR. 
Besides, a set of 4272 epitopes (excluding the above 
78) that satisfied the thresholds of at least one predictor 
score was filtered out. A PCA-based epitope score 
(PbES) was proposed using the scores of the existing 
predictors to simplify the selection of potential 
epitopes. The epitopes having low PbES could be 
recommended to vaccinate the cattle for FMD, CS, 
BVD and IBR viral diseases. Besides, the epitopes 
predicted here could be an addition to the existing 
epitope databases like immuno epitope database 
(IEDB) and the methodology adapted here could also 
be used to predict and analyze the epitopes for the viral 
diseases in other important animal species. 
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