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Introduction
Brain-computer interface (BCI) has gained much interest over the last 

Abstract
Background: The brain-computer interface (BCI) is gaining much 
attention to treat neurological disorders and improve brain-dependent 
functions. Significant achievements over the last decade have focused 
on engineering and computation technology to enhance the recording of 
signals and the generation of output stimuli. Nevertheless, many challenges 
remain for the translation of BCIs to clinical applications.

Methods: We review the relevant data on the four significant gaps in 
enhancing BCI's clinical implementation and effectiveness. 

Results: The paper describes three methods to bridge the current gaps in 
the clinical application of BCI. The first is using a brain-directed adjuvant 
with a high safety profile, which can improve the accuracy of brain 
signaling, summing of information, and production of stimuli. The second 
is implementing a second-generation artificial intelligence system that is 
outcome-oriented for improving data streaming, recording individualized 
brain-variability patterns into the algorithm, and improving closed-loop 
learning at the level of the brain and with the target organ. The system 
overcomes the compensatory mechanisms that underlie the loss of stimuli' 
effectiveness for ensuring sustainable effects. Finally, we use inherent 
brain parameters relevant to consciousness and brain function to bridge 
some of the described gaps.

Conclusions: Combined with the currently developed techniques for 
enhancing effectiveness and ensuring a sustainable response, these 
methods can potentially improve the clinical outcome of BCI techniques.



Lehmann H., Int J Appl Biol Pharm 2023
DOI:10.26502/ijabpt.202124

Citation: Hillel Lehmann, David Arkadir, Yaron Ilan. Methods for Improving Brain-Computer Interface: Using A Brain-Directed Adjuvant and A 
Second-Generation Artificial Intelligence System to Enhance Information Streaming and Effectiveness of Stimuli. International Journal 
of Applied Biology and Pharmaceutical Technology. 14 (2023): 42-52.

Volume 14 • Issue 1 43 

few years. BCI is a communication system of brain signals 
to control malfunctioning organs or external devices [1]. It 
enables control of an external output device by interpreting 
the neural activity. The generation of such systems may be 
independent of the nervous system, such as in Passive BCI, 
assisting patients with motor disabilities [2]. Motor BCI 
comprises electrical recordings from the motor cortex of 
paralyzed humans. The computer decodes the signals and 
can drive robotic arms or restore movement in a paralyzed 
hand by stimulating the muscles in the forearm [3]. Cognitive 
assessment and training can use BCI. Verbal-motor-free 
BCI-based tests assessed cognitive domains in patients with 
Amyotrophic Lateral Sclerosis were developed [2]. Integrating 
a BCI with the sensory cortex can augment dexterity for 
improved fine control. BCIs can restore vision in people with 
acquired blindness and control epileptic seizures [3]. BCI-
based cognitive training is part of neurofeedback therapy 
for neurological developmental disorders, including autism, 
attention-deficit/hyperactivity disorder, stroke patients, and 
elderly subjects [2]. Brain's plasticity and Hebbian-based 
motor recovery use BCI for rewarding cortical activity. These 
are associated with sensory-motor rhythms using self-guided 
and assistive modalities [4]. Non-invasive BCIs comprise 
proprioceptive feedback loops, which include numerous 
sensory variables. It allows the modulation of brain signals to 
improve the hand's function. Based on BCI, applications are 
developed for improving learning, communication, social, 
memory, attention, visuospatial, creative, collaboration,  and 
emotional skills [5].

In the present paper, we describe several of the gaps in 
clinical implementation and improving the effectiveness of 
BCI. We present using brain adjuvants and second-generation 
artificial intelligence (AI) methods to enhance the signals 
stream and ensure an improved sustainable response.

Current gaps in the development and implementation 
of BCI

BCIs typically consist of three components: a sensor that 
records brain neural activity; a decoder that processes the 
signal input by extracting predictive features and classifying 
the intended movement based on signal features; and an 
effector, an external device, typically a robotic limb or a 
screen cursor, that receives instructions from the decoder to 
execute an order [6]. BCI's clinical application rests on the 
premise that activity in at least one cortical region associated 
with motor or sensory functioning is intact. BCI can bypass 
brain lesions in the cortex or spine by linking cerebral activity 
to the effector [6]. The first-in-human implanted, wireless, 
motor neuroprosthesis used an endovascular stent-electrode. 
The electrode transmitted signals from the motor cortex for 
numerous command control digital devices in two patients 
with flaccid upper limb paralysis [7]. Improvement in the 
development of BCI-based systems occurred due to progress 

in understanding neural decoders, systems for neural feature 
extraction, and brain recording modalities [8]. Nevertheless, 
there remain multiple challenges to the clinical use of BCIs. 
Improved engineering and computation overcome some of 
these gaps. However, there are significant challenges in the 
clinical implementation of these systems. The low reliability 
of some techniques used today contributes to the end-users' 
low adaption rate.

Table 1 summarizes some challenges currently faced 
in implementing BCI in clinical practice, including the 
technological and computation barriers BCI systems depend 
on sensors and associated hardware that acquire brain signals. 
Improvements in this hardware are critical to the future of 
BCIs. Traditional BCI platforms involve recording brain 
signals via Electroencephalography (EEG). These systems 
comprise a rule-based translation algorithm that produces 
the control commands [1]. Non-invasive procedures based 
on EEG lack the spatial resolution to record detailed activity 
at the neuronal circuit level [9]. Signals travel a distance 
before being acquired by the EEG machine, and the noise and 
artifacts are causing fundamental problems. EEG requires 
good performance in different environments and reliability 
despite the noise generated by devices. Many BCI targets 
patients surrounded by many electronic pieces of equipment 
[10].

Wireless recording, machine learning analysis, and real-
time temporal resolution can improve EEG-based BCI [11]. 
Placing electrodes on the cortical surface is less invasive 

Hardware / 
Software

non-
invasive

a.	 Low accuracy
b.	 Low reliability
c.	 Isolation of targeted structures
d.	 Lowered accuracy of using non-

invasive measures

invasive

e.	 Safety – infections, rejection
f.	 Recharged in situ
g.	 Replacement of probes following 

a failure
h.	 Space limitations
i.	 High cost 

Decoding

j.	 High variability of signal features 
and continuous change

k.	 Reading and data extraction from 
recorded data

Validation and cost

l.	 Low reliability
m.	Low accuracy of information 

transfer rate
n.	 Sophisticated 
o.	 Small user population
p.	 Delivery of nanomaterials and 

processing Reading and data 
extraction from recorded data

Ethical
q.	 Patient expectations
r.	 Concept of personal identity
s.	 Validity of informed consent

Table 1: Several challenges for implementing BCI in clinical 
practice
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but less precise and associated with decreased accuracy [3]. 
Several challenges include space limitations, replacement 
of probes following failure, isolation of targeted structures, 
delivery of nanomaterials, and processing of the recorded 
data [12]. Functional near-infrared spectroscopy (fNIRS), 
electromyography (EMG), electrooculography (EOG), 
and eye tracker combine with EEG [13]. Implementation 
of multi-sensor data fusion and machine learning-based 
translation algorithms improves the accuracy of such systems 
[1]. Artificial intelligence and deep learning algorithms can 
lead to faster and more accurate sensory input classifications. 
Neural engineering improved neural recording techniques 
and clinical translation of neural interfaces. 

The electronics used are smaller and faster than neurons. 
However, challenges of decoding the neural circuits are yet 
to be overcome [12]. Visual-based BCIs that use P300 or 
steady-state visually evoked potentials (SSVEPs) improve 
functionality. The steady-state somatosensory evoked 
potential (SSSEP) BCIs enhance the visual fatigue that occurs 
with these BCIs. These are based on selective tactile attention 
and can overcome motor activity's reduced reliability of motor 
activity [14]. Invasive BCI systems use implanted electrodes 
and face a range of complex issues. These systems must be 
safe and remain intact, functional, and reliable for decades 
[15]. Long-term safety is of concern as the implant could be 
associated with infections. These systems must be recharged 
in situ or have batteries that last for years or decades; they 
have robust, comfortable, convenient, and discreet external 
elements that could easily interface with high-performance 
applications [15]. 

Motor imagination/movement tasks using functional 
and reactive tasks combined with cognitive tasks for brain 
signals increase BCI accuracy [13]. These include using 
motor imagination with steady-state evoked visual potentials 
(SSVEP) and motor imagination with P300. SSVEP is 
most widely combined with P300 to increase the number 
of commands [13]. Combining more than two modalities 
is developed for improved brain imaging and prosthesis 
control. Hybridizing several modalities can augment the 
number of control commands, improve classification 
accuracy and reduce the signal detection time. Hybrid BCI 
systems with multimodal sensory can improve functions [6].  
Neurofeedback uses BCI systems to enable the real-time 
display of subjects' brain activity while performing a task. 
BCI in this setting allows patients to control their cortical 
activity. Neurofeedback has improved BCI classification 
enhancing user control over BCI output [6]. New interface 
designs may enhance discomfort from daily, long-term use of 
BCI by ergonomic approaches [16].

High-fidelity connectivity with minor groups of neurons 
requires the placement of microelectrodes in the cortex 
[3]. A better understanding of the sensory components is 

also necessary for improving BCI. A significant challenge 
for both invasive and non-invasive BCI is decoding the 
signal. The requirement for months of training, and the 
marked inter-person differences, make it hard to achieve 
standardization. Inconsistency of signal features affected 
by multiple variables, including the users' mental state and 
circumstances, requires adaptive BCI algorithms and deep 
learning for proper function [17]. It is unclear why some 
BCI paradigms or features are effective with some patients 
and some are not [18]. Establishing systems using BCIs for 
subjects with disabilities involves validating their value in 
improving quality of life and cost-effectiveness [19-20]. 

The validation of BCIs for rehabilitation after strokes 
or other disorders requires careful comparisons with 
conventional methods. Current BCIs, with their incomplete 
abilities, are potentially helpful, mainly for people with 
very severe disabilities and relatively small populations. 
Commercial interests have no adequate incentive to produce 
or promote their widespread dissemination [21]. Ethical 
issues of using BCI are significant concerns. These include 
managing patient expectations, the concept of personal 
identity, and the validity of informed consent [22]. Privacy 
is a vital issue as the captured neural signals enable access to 
private data. There are concerns about how BCI data is stored 
and protected [23]. Current methods for overcoming these 
gaps focus on improving technology, including computation 
barriers. Beyond the technological challenges described 
above, several inherent gaps in the brain function itself 
remain to improve BCI clinical effectiveness. 

Using brain-targeted adjuvants for improving BCI

There are multiple engineering and neurological 
challenges to the clinical application of BCI [12]. Using BCI, 
targeting brain-relevant mechanisms provides a new venue for 
improved clinical outcomes. We describe three methods for 
improving BCI by targeting several brain pathways. Figure 
1 presents several gaps that challenge BCI's implementation 
and improve its efficacy. It shows a schematic presentation of 
these methods for bridging the current BCI gaps for improving 
information streaming and the effectiveness of output stimuli.

Microtubules (MTs) are dynamic cytoplasmic tubular 
polymers that form the cell cytoskeleton [24]. MTs provide 
the intracellular transport of secretory vesicles, organelles, 
and intracellular macromolecular assemblies. MTs are 
involved in cell mitosis and meiosis [25, 26]. MTs are 
associated with the innate and adaptive arms of the immune 
system and determine the dynamics of inflammatory cells 
[27-31]. Polarized CD4 Th1, Th17, CD8 T cells, and NK 
cells induce MTs destabilization within neurons in multiple 
sclerosis. Lymphocytes with cytolytic activity drive MTs' 
axonal destabilization independent of neuronal death [31]. 

Bidirectional communication between the brain and the 

https://en.wikipedia.org/wiki/Cytoskeleton
https://en.wikipedia.org/wiki/Cytoskeleton
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intestine occurs in health and disease. Gut-based therapy is a 
method for affecting systemic systems by generating signals 
in the intestine and was shown effective in pre-clinical models 
[32-42]. Preliminary data support the use of this method in 
humans [33, 36, 43-47]. MTs play a role in gut functions. 
Jun N-terminal kinase (JNK) is necessary for the elongation 
of the gut tube and regulates MTs architecture, preserving 
adhesive contacts between cells in the intestine [48]. Tao-
1 destabilizes MTs at the actin-rich cortex, and its loss is 
associated with the disordered migration of germ cells out of 
the gut epithelium and subsequent cell death [49].

Methods for altering microglial function by targeting 
the gut-brain axis carry less toxicity and are easier to 
control. Targeting the gut MTs using low-dose colchicine 
exerts a potent anti-inflammatory effect on target organs. 
Oral administration of non-absorbable low-dose colchicine 
alleviated immune-mediated hepatitis in mice injected with 
concanavalin A (Con A). Similarly, it eased the inflammation 
associated with the metabolic syndrome in the high-fat diet 
model of type 2 diabetes and fatty liver disease (unpublished). 
Microglial cells constitute 5-12% of the cells in the brain and 
are involved in brain homeostasis and its response to triggers 
[50-52, 53]. Homeostatic dysregulation of the brain's immune 
system regulated by microglia plays a role in neurodegenerative 
disorders, including Alzheimer's disease (AD) [54-57]. 
During disease, the microglia become inflammatory while 
losing their homeostatic molecular functions [58-62]. In the 
brain, gut MTs using low-dose colchicine was beneficial 
in a mouse model of acute neurodegeneration mediated by 
microglia. The beneficial effect was associated with altering 
gene expression in genes linked with AD, showing that 
targeting gut MTs can modulate APOE-regulated genes in 
microglia in AD (unpublished). This effect may be related to 

the gut-brain connection by impacting the microbiome [63]. 

Applying brain-targeted adjuvant to BCI, using non-
absorbable low-dose colchicine, which has a high safety 
profile and targets the gut, can bridge several BCI gaps. The 
use of a brain adjuvant can improve the intent signals. It may 
be related to the potential role of MTs in consciousness or 
other yet-to-be-explored mechanisms [64-66]. The adjuvant 
can improve the cortex-generated signals and may enhance 
associations between the relevant brain area with other areas, 
leading to a better sum of the inputs received from the cortex. 
At the output stage, adjuvants can improve both the generated 
stimuli and the closed-loop regulation back to the cortex, thus 
improving the effectiveness of BCI.
Implementing second-generation artificial 
intelligence-based variability for improving and 
sustaining BCI effectiveness

First-generation AI systems analyze large datasets and 
predict prognoses. At the same time, these systems aid 
end-users, patients, and healthcare providers; their overall 
penetration and everyday use are lower than anticipated [67]. 
Second-generation systems can improve clinical outcomes and 
adherence by patients and physicians [67]. These platforms 
can improve organ function and response to therapies while 
controlling for the dynamic nature of the host and disease. 
They overcome the "big data" challenges by implementing 
an n=1 concept, directing the results toward a single subject 
providing a method for personalizing the therapy in a clinically 
meaningful way [67]. Second-generation systems provide a 
platform for generating clinically significant databases, thus 
enabling better use of the data generated [67].

Variability characterizes multiple functions in nature 
and can serve as a method for improving biological systems 

Figure 1: Several potential solutions for improved information streaming and effectiveness of stimuli in brain-computer 
interface (BCI). 
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[68-84]. The dynamicity of biological processes determines 
disease progression, manifestations, and response to stimuli 
and drugs. Variability characterizes the normal function 
of many organs, such as the variability in heart rate, gait, 
breathing, and others [85-88], and is inherent to multiple 
brain functions [69, 72, 76, 89]. Brain signal variability 
(BSV) characterizes brain function and reflects the capacity 
for state transition of neural activities. Prenatal fMRI defines 
variability patterns of the brain networks and shows the spatial 
distribution and individual variability in network architecture. 
Individual variability manifests by decreasing sensorimotor, 
visual, subcortical, dorsal, and ventral attention networks [90]. 
Structural brain development covariance may underlie brain 
variability concerning cognition and disease vulnerability 
[91]. Genetic variation is associated with altered response to 
deep brain stimulation in Parkinson's disease, suggesting that 
variability in brain function is linked to genotypes [92]. The 
diurnal physiological variability in neuro-metabolite levels 
suggests a link between chronobiology in brain variability 
[93]. 

Patients with a generalized anxiety disorder (GAD) show 
decreased BSV in widespread regions, including the visual, 
sensorimotor, frontoparietal, limbic, and thalamus. These 
systems have decreased BSV associated with an inflexible 
brain state transfer pattern. A correlation between BSV and 
trait anxiety score was positive in patients [94]. Differences in 
cognitive modulation of brain signal variability are associated 
with subject differences in motor expertise. This process 
underlies differences in information-processing capacity 
and information integration during cognitive processing 
[95]. Regional signal variability (RSV) measures efficiency 
and modulatory capacity within brain regions and indicates 
endogenous pain modulatory system responsivity to training 
following repeated bouts of pain [96]. The second-generation 
AI system implements personalized variability parameters 
into treatment algorithms to improve response to chronic 
interventions in various diseases, including brain disorders 
[68, 70, 73, 77-82, 97-112]. Implementing second-generation 
AI in BCI can enhance the accuracy of recording brain inputs. 
As brain signals are not regular and are dynamic by nature, a 
system that continuously adapts to changes can improve the 
accuracy of the information. 

The variability in brain networks underlies subject 
differences in cognition and behaviors [90]. The EEG's 
sensorimotor rhythms (SMR) used for BCI to rehabilitate 
motor impairments varies over time and across subjects. The 
intra- and inter-subject variabilities cause covariate shifts 
in data distributions that alter the transferability of model 
parameters among subjects. Machine learning-based methods 
compensate for inter-and intra-subject variability manifested 
in EEG-derived feature distributions [113]. Determining 
the response under a threatening situation showed that both 

inter-and intra-subject variabilities impacted the performance 
measured by EEG signals [114].

Second-generation AI includes methods to compensate for 
inter and intra-subject variabilities [67, 113]. The dynamicity 
of the system enables it to adapt to constant changes in 
the host, the disease, the response to intervention, and the 
environment. As many of these parameters differ between 
subjects and change over time in the same subject, the system 
continuously adapts itself to improve the patient's outcome 
[79, 115]. Variability in brain signals can be quantified 
and implemented into the second-generation algorithm to 
improve accuracy. Organ variability is personalized and 
serves as a basis for subject-tailored platforms, improving 
information streaming and output stimuli [115]. Second-
generation systems can solve the intra-subject and inter-
subject variability in the generated signals and the response to 
stimuli. These systems can improve the response to therapies 
by implementing signatures of disease-related variabilities 
into the treatment regimens [68, 70, 73, 77, 80, 82, 98-111]. 
Implementing a system that controls changes adaptively 
provides a means for better translation of information into 
improved personalized stimuli in a dynamic way [115, 116]. 
The system provides an enhanced platform for a closed loop 
between brain areas, enabling better summing of the signals 
between the target organ and the brain.

Examples include systems that follow eye movements that 
may precede the cortex and quantify and implement into the 
algorithm eye movement variability [117]. It collects EEG/
ECoG data from multiple attempts to quantify personalized 
variability patterns and add them to cortex-derived data [118, 
119]. It quantifies signal variability by adding stimuli to 
"relevant" and "irrelevant" brain areas and brain autonomic 
signals, including temperature alterations in different brain 
areas. It uses intra-brain nano-robots to measure electrical 
or metabolic activity alteration before cortex-derived signals 
[120].

Decoy of the effect of stimuli due to compensatory 
mechanisms and tolerance at different levels of the targets 
is a significant problem for BCI interventions [79]. Second-
generation AI systems overcome these mechanisms, enabling 
a sustainable long-term response [115]. The use of low-
dose colchicine under the control of the second-generation 
artificial intelligence system can further improve the drug's 
effectiveness, overcome the loss of response, and reduce side 
effects [29, 30, 75, 81].

Implementing inherent brain platforms for 
overcoming gaps in BCI

Like other complex biological systems, the brain carries 
information but does not necessarily have perfect structure 
or symmetry. The irregularity that characterizes some of its 
pathways provides an opportunity to apply notions of physics 
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to this biological system [69, 72, 76, 83 79, 121]. An alliance 
between classical and correlative brain function improves 
BCI.

A direct association mediates correlations between 
components of complex systems between different elements 
of this system [122]. Direct contact or the transfer of mediators 
facilitates the effect [123-125]. Recently a system was 
developed that correlates between two parts of the immune 
system without direct interaction or a transfer of mediators 
between them [126]. The associated states may be present 
within the system and involve a specific correlation between 
donors and recipients. Learning and memory capabilities 
are required for such correlations to occur. A "wave type of 
memory" means continuous feedback from multiple brain 
areas, and the target organ or device for transmitting and 
receiving signals are mandatory for efficient correlations to 
occur [126, 127]. 

BCI can benefit from indirect correlations between 
different brain areas, which can implement various energy 
transfer types by recording or using signals and producing 
stimuli that are not measured using current technologies. 
Other kinds of energies may be involved. Recording signals 
from multiple brain areas that affect or result from these 
energies can improve the summing of inputs and outputs 
at various levels. The technology can expand closed-loop 
inputs and outputs in the brain and target device by recording 
"unmeasured responses." Implementing methods based 
on inherent brain factors can bridge the problematic gap 
from the intent to the cortex by using consciousness-based 
mechanisms for improved BCI [128-130]. The effects occur 
at cellular or subcellular levels. These effects propose that 
some of the principles of quantum physics may apply to 
biological systems [128, 129, 131, 132]. 

Translation of the intention of a human subject to stimulate 
a rat brain motor area responsible for the tail movement 
supports a non-natural computer-brain interface to induce an 
out-of-body effect [133]. Combining BCI with virtual reality 
(VR) is used to rehabilitate neurological diseases. It involves 
motor imagery, P300, and steady-state visual-evoked 
potential. Integrating VR scenes into BCI systems improved 
the recovery process from nervous system injuries, providing 
better patient feedback and promoting brain function [134].

The transfer of information between different species' 
brains using non-invasive methods supports the feasibility of 
a computer-mediated BCI that connects the neural functions 
between biological entities. Using these technologies is 
anticipated to expand the prediction of the sum of the 
recorded signals and the accuracy of generated stimuli 
at various system levels. Finally, it improves the brain-
controlled target organ or device function. It scales up current 
BCI methods to enhance their beneficial clinical effects. 
BCI has become an effective solution for multiple brain and 

spine disorders. It provides a platform for treating numerous 
non-neurological diseases by improving brain-target organ 
regulation. Technological challenges involving engineering 
and computation are being worked on and continuously 
improved. However, multiple barriers evolve from the 
inherent brain function. The suggested venues of using brain 
adjuvants, second-generation AI in enhancing the stream 
of information and stimuli, and implementing brain-linked 
methods for improving brain inputs and outputs to targets, 
set the basis for improving the clinical effectiveness of BCI.
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